AiEson / CrossMatch

CrossMatch: Enhance Semi-Supervised Medical Image Segmentation with Perturbation Strategies and Knowledge Distillation
MIT License
21 stars 0 forks source link

CrossMatch

Code for this paper: CrossMatch: Enhance Semi-Supervised Medical Image Segmentation with Perturbation Strategies and Knowledge Distillation

🎉🎉🎉 This paper has been accepted by IEEE Journal of Biomedical and Health Informatics !

CrossMatch Paper: IEEE arXiv

overview

Requirements

  1. Create conda environment:
    conda create -n CrossMatch python=3.11
  2. Clone the repo:
    git clone https://github.com/AiEson/CrossMatch.git
  3. Activate the environment:
    conda activate CrossMatch
  4. Install the requirements:
    cd CrossMatch
    pip install -r requirements.txt

Usage

LA dataset

One click to run:

cd LA/code
bash train.sh

ACDC dataset

One click to run:

cd ACDC
bash scripts/train.sh gpu_num port
# like `bash scripts/train.sh 4 12333` for 4 GPUs and port 12333

Results

LA dataset results

Method Reference Dice(%)↑ Jaccard(%)↑ 95HD(voxel)↓ ASD(voxel)↓
UA-MT (MICCAI'19) 85.81 75.41 18.25 5.04
SASSNet (MICCAI'20) 85.71 75.35 14.74 4.00
DTC (AAAI'21) 84.55 73.91 13.80 3.69
MC-Net (MICCAI'21) 86.87 78.49 11.17 2.18
URPC (MedIA'22) 83.37 71.99 17.91 4.41
SS-Net (MICCAI'22) 86.56 76.61 12.76 3.02
MC-Net+ (MedIA'22) 87.68 78.27 10.35 1.85
DMD (MICCAI'23) 89.70 81.42 6.88 1.78
BCP (CVPR'23) 89.55 81.22 7.10 1.69
UniMatch (CVPR'23) 89.09 80.47 12.50 3.59
CAML (MICCAI'23) 89.62 81.28 8.76 2.02
Ours 91.33 84.11 5.29 1.53
Method Reference Dice(%)↑ Jaccard(%)↑ 95HD(voxel)↓ ASD(voxel)↓
UA-MT (MICCAI'19) 88.18 79.09 9.66 2.62
SASSNet (MICCAI'20) 88.11 79.08 12.31 3.27
DTC (AAAI'21) 87.79 78.52 10.29 2.50
MC-Net (MICCAI'21) 90.43 82.69 6.52 1.66
URPC (MedIA'22) 87.68 78.36 14.39 3.52
SS-Net (MICCAI'22) 88.19 79.21 8.12 2.20
MC-Net+ (MedIA'22) 90.60 82.93 6.27 1.58
DMD (MICCAI'23) 90.46 82.66 6.39 1.62
BCP (CVPR'23) 90.18 82.36 6.64 1.61
UniMatch (CVPR'23) 90.77 83.18 7.21 2.05
CAML (MICCAI'23) 90.78 83.19 6.11 1.68
Ours 91.61 84.57 5.36 1.57

ACDC dataset results

Method Reference Dice(%)↑ Jaccard(%)↑ 95HD(voxel)↓ ASD(voxel)↓
UA-MT (MICCAI'19) 46.04 35.97 20.08 7.75
SASSNet (MICCAI'20) 57.77 46.14 20.05 6.06
DTC (AAAI'21) 56.90 45.67 23.36 7.39
MC-Net (MICCAI'21) 62.85 52.29 7.62 2.33
URPC (MedIA'22) 55.87 44.64 13.60 3.74
SS-Net (MICCAI'22) 65.82 55.38 6.67 2.28
DMD (MICCAI'23) 80.60 69.08 5.96 1.90
UniMatch (CVPR'23) 84.38 75.54 5.06 1.04
Ours 88.27 80.17 1.53 0.46

Method Reference Dice(%)↑ Jaccard(%)↑ 95HD(voxel)↓ ASD(voxel)↓
UA-MT (MICCAI'19) 81.65 70.64 6.88 2.02
SASSNet (MICCAI'20) 84.50 74.34 5.42 1.86
DTC (AAAI'21) 84.29 73.92 12.81 4.01
MC-Net (MICCAI'21) 86.44 77.04 5.50 1.84
URPC (MedIA'22) 83.10 72.41 4.84 1.53
SS-Net (MICCAI'22) 86.78 77.67 6.07 1.40
DMD (MICCAI'23) 87.52 78.62 4.81 1.60
UniMatch (CVPR'23) 88.08 80.10 2.09 0.45
Ours 89.08 81.44 1.52 0.52

Qualitative results

la_qulti

Citation

If you find this project useful, please consider citing:

@ARTICLE{CrossMatch,
  author={Zhao, Bin and Wang, Chunshi and Ding, Shuxue},
  journal={IEEE Journal of Biomedical and Health Informatics}, 
  title={CrossMatch: Enhance Semi-Supervised Medical Image Segmentation with Perturbation Strategies and Knowledge Distillation}, 
  year={2024},
  volume={},
  number={},
  pages={1-13},
  keywords={Perturbation methods;Data models;Predictive models;Biomedical imaging;Decoding;Accuracy;Training;Semi-supervised segmentation;Self-knowledge distillation;Image perturbation},
  doi={10.1109/JBHI.2024.3463711}}

Acknowledgement