Alcoholrithm / TabularS3L

A PyTorch Lightning-based library for self- and semi-supervised learning on tabular data.
MIT License
25 stars 2 forks source link
dae pytorch pytorch-lightning scarf self-supervised-learning semi-supervised-learning subtab switchtab tabular-data vime

TabularS3L

Overview | Installation | Available Models with Quick Start Guides | Benchmark | To DO | Contributing

pypi Downloads DOI License: MIT

TabularS3L is a PyTorch Lightning-based library designed to facilitate self- and semi-supervised learning with tabular data. While numerous self- and semi-supervised learning tabular models have been proposed, there is a lack of a comprehensive library that addresses the needs of tabular practitioners. This library aims to fill this gap by providing a unified PyTorch Lightning-based framework for exploring and deploying such models.

Installation

We provide a Python package ts3l of TabularS3L for users who want to use semi- and self-supervised learning tabular models.

pip install ts3l

Available Models with Quick Start

TabularS3L employs a two-phase learning approach, where the learning strategies differ between phases. Below is an overview of the models available within TabularS3L, highlighting the learning strategies employed in each phase. The abbreviations 'Self-SL', 'Semi-SL', and 'SL' represent self-supervised learning, semi-supervised learning, and supervised learning, respectively.

According to the original implementation and the paper, the encoder of DAE, VIME, and SubTab is frozen during the second phase of learning. However, you can choose to freeze the encoder or not by setting the freeze_encoder flag in the set_second_phase method.

Model First Phase Second Phase
DAE (GitHub) Self-SL SL
VIME (NeurIPS'20) Self-SL Semi-SL or SL
SubTab (NeurIPS'21) Self-SL SL
SCARF (ICLR'22) Self-SL SL
SwitchTab (AAAI'24) Self-SL SL

Denoising AutoEncoder (DAE)

DAE processes input data that has been partially corrupted, producing clean data and predicting which features are corrupted during the self-supervised learning. The denoising task enables the model to learn the input distribution and generate latent representations that are robust to corruption. These latent representations can be utilized for a variety of downstream tasks.

Quick Start ```python # Assume that we have X_train, X_valid, X_test, y_train, y_valid, y_test, categorical_cols, and continuous_cols # Prepare the DAELightning Module from ts3l.pl_modules import DAELightning from ts3l.utils.dae_utils import DAEDataset, DAECollateFN from ts3l.utils import TS3LDataModule from ts3l.utils.dae_utils import DAEConfig from pytorch_lightning import Trainer metric = "accuracy_score" input_dim = X_train.shape[1] hidden_dim = 1024 output_dim = 2 encoder_depth=4 head_depth = 2 noise_type = "Swap" noise_ratio = 0.3 max_epochs = 20 batch_size = 128 X_train, X_unlabeled, y_train, _ = train_test_split(X_train, y_train, train_size = 0.1, random_state=0, stratify=y_train) config = DAEConfig( task="classification", loss_fn="CrossEntropyLoss", metric=metric, metric_hparams={}, input_dim=input_dim, hidden_dim=hidden_dim, output_dim=output_dim, encoder_depth=encoder_depth, head_depth = head_depth, noise_type = noise_type, noise_ratio = noise_ratio, num_categoricals=len(category_cols), num_continuous=len(continuous_cols) ) pl_dae = DAELightning(config) ### First Phase Learning train_ds = DAEDataset(X = X_train, unlabeled_data = X_unlabeled, continuous_cols = continuous_cols, category_cols = category_cols) valid_ds = DAEDataset(X = X_valid, continuous_cols = continuous_cols, category_cols = category_cols) datamodule = TS3LDataModule(train_ds, valid_ds, batch_size, train_sampler='random', train_collate_fn=DAECollateFN(config), valid_collate_fn=DAECollateFN(config)) trainer = Trainer( accelerator = 'cpu', max_epochs = max_epochs, num_sanity_val_steps = 2, ) trainer.fit(pl_dae, datamodule) ### Second Phase Learning pl_dae.set_second_phase() train_ds = DAEDataset(X = X_train, Y = y_train.values, unlabeled_data=X_unlabeled, continuous_cols=continuous_cols, category_cols=category_cols) valid_ds = DAEDataset(X = X_valid, Y = y_valid.values, continuous_cols=continuous_cols, category_cols=category_cols) datamodule = TS3LDataModule(train_ds, valid_ds, batch_size = batch_size, train_sampler="weighted") trainer = Trainer( accelerator = 'cpu', max_epochs = max_epochs, num_sanity_val_steps = 2, ) trainer.fit(pl_dae, datamodule) # Evaluation from sklearn.metrics import accuracy_score import torch from torch.nn import functional as F from torch.utils.data import DataLoader, SequentialSampler test_ds = DAEDataset(X_test, category_cols=category_cols, continuous_cols=continuous_cols) test_dl = DataLoader(test_ds, batch_size, shuffle=False, sampler = SequentialSampler(test_ds)) preds = trainer.predict(pl_dae, test_dl) preds = F.softmax(torch.concat([out.cpu() for out in preds]).squeeze(),dim=1) accuracy = accuracy_score(y_test, preds.argmax(1)) print("Accuracy %.2f" % accuracy) ```

VIME: Extending the Success of Self- and Semi-supervised Learning to Tabular Domain

VIME enhances tabular data learning through a dual approach. In its first phase, it utilize a pretext task of estimating mask vectors from corrupted tabular data, alongside a reconstruction pretext task for self-supervised learning. The second phase leverages consistency regularization on unlabeled data.

Quick Start ```python # Assume that we have X_train, X_valid, X_test, y_train, y_valid, y_test, categorical_cols, and continuous_cols # Prepare the VIMELightning Module from ts3l.pl_modules import VIMELightning from ts3l.utils.vime_utils import VIMEDataset from ts3l.utils import TS3LDataModule from ts3l.utils.vime_utils import VIMEConfig from pytorch_lightning import Trainer metric = "accuracy_score" input_dim = X_train.shape[1] hidden_dim = 1024 output_dim = 2 alpha1 = 2.0 alpha2 = 2.0 beta = 1.0 K = 3 p_m = 0.2 batch_size = 128 X_train, X_unlabeled, y_train, _ = train_test_split(X_train, y_train, train_size = 0.1, random_state=0, stratify=y_train) config = VIMEConfig( task="classification", loss_fn="CrossEntropyLoss", metric=metric, metric_hparams={}, input_dim=input_dim, hidden_dim=hidden_dim, output_dim=output_dim, alpha1=alpha1, alpha2=alpha2, beta=beta, K=K, p_m = p_m, num_categoricals=len(category_cols), num_continuous=len(continuous_cols) ) pl_vime = VIMELightning(config) ### First Phase Learning train_ds = VIMEDataset(X = X_train, unlabeled_data = X_unlabeled, config=config, continuous_cols = continuous_cols, category_cols = category_cols) valid_ds = VIMEDataset(X = X_valid, config=config, continuous_cols = continuous_cols, category_cols = category_cols) datamodule = TS3LDataModule(train_ds, valid_ds, batch_size, train_sampler='random') trainer = Trainer( accelerator = 'cpu', max_epochs = 20, num_sanity_val_steps = 2, ) trainer.fit(pl_vime, datamodule) ### Second Phase Learning from ts3l.utils.vime_utils import VIMESecondPhaseCollateFN pl_vime.set_second_phase() train_ds = VIMEDataset(X_train, y_train.values, config, unlabeled_data=X_unlabeled, continuous_cols=continuous_cols, category_cols=category_cols, is_second_phase=True) valid_ds = VIMEDataset(X_valid, y_valid.values, config, continuous_cols=continuous_cols, category_cols=category_cols, is_second_phase=True) datamodule = TS3LDataModule(train_ds, valid_ds, batch_size = batch_size, train_sampler="weighted", train_collate_fn=VIMESecondPhaseCollateFN()) trainer.fit(pl_vime, datamodule) # Evaluation from sklearn.metrics import accuracy_score import torch from torch.nn import functional as F from torch.utils.data import DataLoader, SequentialSampler test_ds = VIMEDataset(X_test, category_cols=category_cols, continuous_cols=continuous_cols, is_second_phase=True) test_dl = DataLoader(test_ds, batch_size, shuffle=False, sampler = SequentialSampler(test_ds)) preds = trainer.predict(pl_vime, test_dl) preds = F.softmax(torch.concat([out.cpu() for out in preds]).squeeze(),dim=1) accuracy = accuracy_score(y_test, preds.argmax(1)) print("Accuracy %.2f" % accuracy) ```

SubTab: Subsetting Features of Tabular Data for Self-Supervised Representation Learning

SubTab turns the task of learning from tabular data into as a multi-view representation challenge by dividing input features into multiple subsets during its first phase. During the second phase, collaborative inference is used to derive a joint representation by aggregating latent variables across subsets. This approach improves the model's performance in supervised learning tasks.

Quick Start ```python # Assume that we have X_train, X_valid, X_test, y_train, y_valid, y_test, categorical_cols, and continuous_cols # Prepare the SubTabLightning Module from ts3l.pl_modules import SubTabLightning from ts3l.utils.subtab_utils import SubTabDataset, SubTabCollateFN from ts3l.utils import TS3LDataModule from ts3l.utils.subtab_utils import SubTabConfig from pytorch_lightning import Trainer metric = "accuracy_score" input_dim = X_train.shape[1] hidden_dim = 1024 output_dim = 2 tau = 1.0 use_cosine_similarity = True use_contrastive = True use_distance = True n_subsets = 4 overlap_ratio = 0.75 mask_ratio = 0.1 noise_type = "Swap" noise_level = 0.1 batch_size = 128 max_epochs = 3 X_train, X_unlabeled, y_train, _ = train_test_split(X_train, y_train, train_size = 0.1, random_state=0, stratify=y_train) config = SubTabConfig( task="classification", loss_fn="CrossEntropyLoss", metric=metric, metric_hparams={}, input_dim=input_dim, hidden_dim=hidden_dim, output_dim=output_dim, tau=tau, use_cosine_similarity= use_cosine_similarity, use_contrastive=use_contrastive, use_distance=use_distance, n_subsets=n_subsets, overlap_ratio=overlap_ratio, mask_ratio=mask_ratio, noise_type=noise_type, noise_level=noise_level ) pl_subtab = SubTabLightning(config) ### First Phase Learning train_ds = SubTabDataset(X_train, unlabeled_data=X_unlabeled) valid_ds = SubTabDataset(X_valid) datamodule = TS3LDataModule(train_ds, valid_ds, batch_size, train_sampler='random', train_collate_fn=SubTabCollateFN(config), valid_collate_fn=SubTabCollateFN(config), n_jobs = 4) trainer = Trainer( accelerator = 'cpu', max_epochs = max_epochs, num_sanity_val_steps = 2, ) trainer.fit(pl_subtab, datamodule) ### Second Phase Learning pl_subtab.set_second_phase() train_ds = SubTabDataset(X_train, y_train.values) valid_ds = SubTabDataset(X_valid, y_valid.values) datamodule = TS3LDataModule(train_ds, valid_ds, batch_size = batch_size, train_sampler="weighted", train_collate_fn=SubTabCollateFN(config), valid_collate_fn=SubTabCollateFN(config)) trainer.fit(pl_subtab, datamodule) # Evaluation from sklearn.metrics import accuracy_score import torch from torch.nn import functional as F from torch.utils.data import DataLoader, SequentialSampler test_ds = SubTabDataset(X_test) test_dl = DataLoader(test_ds, batch_size, shuffle=False, sampler = SequentialSampler(test_ds), num_workers=4, collate_fn=SubTabCollateFN(config)) preds = trainer.predict(pl_subtab, test_dl) preds = F.softmax(torch.concat([out.cpu() for out in preds]).squeeze(),dim=1) accuracy = accuracy_score(y_test, preds.argmax(1)) print("Accuracy %.2f" % accuracy) ```

SCARF: Self-Supervised Contrastive Learning using Random Feature Corruption

SCARF introduces a contrastive learning framework specifically tailored for tabular data. By corrupting random subsets of features, SCARF creates diverse views for self-supervised learning in its first phase. The subsequent phase transitions to supervised learning, utilizing a pretrained encoder to enhance model accuracy and robustness.

Quick Start ```python # Assume that we have X_train, X_valid, X_test, y_train, y_valid, y_test, categorical_cols, and continuous_cols # Prepare the SCARFLightning Module from ts3l.pl_modules import SCARFLightning from ts3l.utils.scarf_utils import SCARFDataset from ts3l.utils import TS3LDataModule from ts3l.utils.scarf_utils import SCARFConfig from pytorch_lightning import Trainer metric = "accuracy_score" input_dim = X_train.shape[1] hidden_dim = 1024 output_dim = 2 encoder_depth = 3 head_depth = 1 dropout_rate = 0.04 corruption_rate = 0.6 batch_size = 128 max_epochs = 10 X_train, X_unlabeled, y_train, _ = train_test_split(X_train, y_train, train_size = 0.1, random_state=0, stratify=y_train) config = SCARFConfig( task="classification", loss_fn="CrossEntropyLoss", metric=metric, metric_hparams={}, input_dim=input_dim, hidden_dim=hidden_dim, output_dim=output_dim, encoder_depth=encoder_depth, head_depth=head_depth, dropout_rate=dropout_rate, corruption_rate = corruption_rate ) pl_scarf = SCARFLightning(config) ### First Phase Learning train_ds = SCARFDataset(X_train, unlabeled_data=X_unlabeled, config = config) valid_ds = SCARFDataset(X_valid, config=config) datamodule = TS3LDataModule(train_ds, valid_ds, batch_size=batch_size, train_sampler="random") trainer = Trainer( accelerator = 'cpu', max_epochs = max_epochs, num_sanity_val_steps = 2, ) trainer.fit(pl_scarf, datamodule) ### Second Phase Learning pl_scarf.set_second_phase() train_ds = SCARFDataset(X_train, y_train.values, is_second_phase=True) valid_ds = SCARFDataset(X_valid, y_valid.values, is_second_phase=True) datamodule = TS3LDataModule(train_ds, valid_ds, batch_size = batch_size, train_sampler="weighted") trainer.fit(pl_scarf, datamodule) # Evaluation from sklearn.metrics import accuracy_score import torch from torch.nn import functional as F from torch.utils.data import DataLoader, SequentialSampler test_ds = SCARFDataset(X_test, is_second_phase=True) test_dl = DataLoader(test_ds, batch_size, shuffle=False, sampler = SequentialSampler(test_ds), num_workers=4) preds = trainer.predict(pl_scarf, test_dl) preds = F.softmax(torch.concat([out.cpu() for out in preds]).squeeze(),dim=1) accuracy = accuracy_score(y_test, preds.argmax(1)) print("Accuracy %.2f" % accuracy) ```

SwitchTab: Switched Autoencoders Are Effective Tabular Learners

SwitchTab introduces a novel self-supervised method specifically designed to decuple mutual and salient features among data pair, resulting in more representative embeddings. Moreover, the pre-trained salient embeddings can be utilized as plug-and-play features to enhance the performance of various traditional classification methods.

Quick Start ```python # Assume that we have X_train, X_valid, X_test, y_train, y_valid, y_test, categorical_cols, and continuous_cols # Prepare the SwitchTabLightning Module from ts3l.pl_modules import SwitchTabLightning from ts3l.utils.switchtab_utils import SwitchTabDataset, SwitchTabFirstPhaseCollateFN from ts3l.utils import TS3LDataModule from ts3l.utils.switchtab_utils import SwitchTabConfig from pytorch_lightning import Trainer metric = "accuracy_score" input_dim = X_train.shape[1] hidden_dim = 1024 output_dim = 2 encoder_depth = 3 n_head = 2 u_label = -1 batch_size = 128 X_train, X_unlabeled, y_train, _ = train_test_split(X_train, y_train, train_size = 0.1, random_state=0, stratify=y_train) config = SwitchTabConfig( task="classification", loss_fn="CrossEntropyLoss", metric=metric, metric_hparams={}, input_dim=input_dim, hidden_dim=hidden_dim, output_dim=output_dim, encoder_depth=encoder_depth, n_head = n_head, u_label = u_label ) pl_switchtab = SwitchTabLightning(config) ### First Phase Learning train_ds = SwitchTabDataset(X = X_train, unlabeled_data = X_unlabeled, Y = y_train.values, config=config, continuous_cols=continuous_cols, category_cols=category_cols) valid_ds = SwitchTabDataset(X = X_valid, config=config, Y = y_valid.values, continuous_cols=continuous_cols, category_cols=category_cols) datamodule = TS3LDataModule(train_ds, valid_ds, batch_size, train_sampler='weighted', train_collate_fn=SwitchTabFirstPhaseCollateFN(), valid_collate_fn=SwitchTabFirstPhaseCollateFN()) trainer = Trainer( accelerator = 'cpu', max_epochs = 20, num_sanity_val_steps = 2, ) trainer.fit(pl_switchtab, datamodule) ### Second Phase Learning pl_switchtab.set_second_phase() train_ds = SwitchTabDataset(X = X_train, Y = y_train.values, continuous_cols=continuous_cols, category_cols=category_cols, is_second_phase=True) valid_ds = SwitchTabDataset(X = X_valid, Y = y_valid.values, continuous_cols=continuous_cols, category_cols=category_cols, is_second_phase=True) datamodule = TS3LDataModule(train_ds, valid_ds, batch_size = batch_size, train_sampler="weighted") trainer = Trainer( accelerator = 'cpu', max_epochs = 20, num_sanity_val_steps = 2, ) trainer.fit(pl_switchtab, datamodule) # Evaluation from sklearn.metrics import accuracy_score import torch from torch.nn import functional as F from torch.utils.data import DataLoader, SequentialSampler test_ds = SwitchTabDataset(X_test, continuous_cols=continuous_cols, category_cols=category_cols, is_second_phase=True) test_dl = DataLoader(test_ds, batch_size, shuffle=False, sampler = SequentialSampler(test_ds)) preds = trainer.predict(pl_switchtab, test_dl) preds = F.softmax(torch.concat([out.cpu() for out in preds]).squeeze(),dim=1) accuracy = accuracy_score(y_test, preds.argmax(1)) print("Accuracy %.2f" % accuracy) ```

Benchmark

We provide a simple benchmark using TabularS3L against XGBoost. The train-validation-test ratio is 6:2:2 and we tuned each model over 50 trials using Optuna. The results are the average of the random seeds [0,4]. The best results are bold. 'acc', 'b-acc', and 'mse' mean 'Accuracy', 'Balanced Accuracy', and 'Mean Squared Error', respectively.

Use this benchmark for reference only, as only a small number of random seeds were used.

10% labeled samples
Model diabetes (acc) cmc (b-acc) abalone (mse)
XGBoost 0.7325 0.4763 5.5739
DAE 0.7208 0.4885 5.6168
VIME 0.7182 0.5087 5.6637
SubTab 0.7312 0.4930 7.2418
SCARF 0.7416 0.4710 5.8888
SwitchTab 0.7156 0.4886 5.9907

100% labeled samples
Model diabetes (acc) cmc (b-acc) abalone (mse)
XGBoost 0.7234 0.5291 4.8377
DAE 0.7390 0.5500 4.5758
VIME 0.7688 0.5477 4.5804
SubTab 0.7390 0.5432 6.3104
SCARF 0.7442 0.5521 4.4443
SwitchTab 0.7585 0.5411 4.7489

To DO

Contributing

Contributions to this implementation are highly appreciated. Whether it's suggesting improvements, reporting bugs, or proposing new features, feel free to open an issue or submit a pull request.