It is a simple example demonstrates how to use the Wandb API to monitor and analyze your Machine Learning projects.
Wandb page of this project: https://wandb.ai/anon234523452346/CIFAR10
With free Wandb account you will have a 100 GB of cloud storage for your logs, models, artifacts, and other data.
It also uses Docker and Docker Compose. And runs on GPU and CPU as well.
1. Python
tensorflow==2.9.1
tensorflow_datasets==4.6.0
keras-cv==0.2.6
PyYAML>=6.0
wandb>=0.12.17
matplotlib>=3.5.2
2. wandb account for tracking your experiments.
git clone https://github.com/Alex-Kopylov/wandb-tensorflow-example.git
Docker is preferable for further integration in complex CI\/CD pipelines.
docker compose build
docker compose up
You can use Conda or default Python virtual environment.
conda create -n wandb-tensorflow python=3.8
conda activate wandb-tensorflow
pip install -r requirements.txt
$ wandb disabled
$ export WANDB_MODE=disabled
wandb.init(mode="disabled")