State-of-the art Automated Machine Learning python library for Tabular Data
[x] Binary Classification
[x] Regression
[ ] Multiclass Classification (in progress...)
The bigger, the better
From AutoML-Benchmark
pip install automl-alex
Classifier:
from automl_alex import AutoMLClassifier
model = AutoMLClassifier()
model.fit(X_train, y_train, timeout=600)
predicts = model.predict(X_test)
Regression:
from automl_alex import AutoMLRegressor
model = AutoMLRegressor()
model.fit(X_train, y_train, timeout=600)
predicts = model.predict(X_test)
DataPrepare:
from automl_alex import DataPrepare
de = DataPrepare()
X_train = de.fit_transform(X_train)
X_test = de.transform(X_test)
Simple Models Wrapper:
from automl_alex import LightGBMClassifier
model = LightGBMClassifier()
model.fit(X_train, y_train)
predicts = model.predict_proba(X_test)
model.opt(X_train, y_train,
timeout=600, # optimization time in seconds,
)
predicts = model.predict_proba(X_test)
More examples in the folder ./examples:
It integrates many popular frameworks:
[x] Categorical Features
[x] Numerical Features
[x] Binary Features
[ ] Text
[ ] Datetime
[ ] Timeseries
[ ] Image
Works with optuna-dashboard
Run
$ optuna-dashboard sqlite:///db.sqlite3
[x] Feature Generation
[x] Save/Load and Predict on New Samples
[x] Advanced Logging
[x] Add opt Pruners
[ ] Docs Site
[ ] DL Encoders
[ ] Add More libs (NNs)
[ ] Multiclass Classification
[ ] Build pipelines