Light version of convolutional neural network Yolo v3 & v2 for objects detection with a minimum of dependencies (INT8-inference, BIT1-XNOR-inference)
This repository supports:
How to compile:
make
on Linux or build yolo_cpu.sln
on WindowsTo compile for GPU set flag GPU=1
in the Makefile
on Linux or build yolo_gpu.sln
on Windows
Required both CUDA >= 8.0 and cuDNN >= 7.1.1
How to start:
yolov3.weights
to the bin
directory and run ./yolo.sh
on Linux (or yolo_cpu.cmd
/ yolo_gpu.cmd
on Windows)yolov3-tiny.weights
to the bin
directory and run ./tiny-yolo.sh
How to use INT8-inference:
-quantized
at the end of command, for example, tiny-yolo-int8.sh
or yolo_cpu_int8.cmd
input_calibration=
parameter in your cfg-file, from the correspon cfg-file: yolov3-tiny.cfg
or yolov3.cfg
, ...How to use BIT1-XNOR-inference - only for custom models (you should train it by yourself):
yolov3-spp_xnor_obj.cfg
and train it by using this repository as usual https://github.com/AlexeyAB/darknet by using pre-trained file darknet53_448_xnor.conv.74
./darknet detector test data/obj.names yolov3-spp_xnor_obj.cfg data/yolov3-spp_xnor_obj_5000.weights -thresh 0.15 dog.jpg
./darknet detector map data/obj.data yolov3-spp_xnor_obj.cfg data/yolov3-spp_xnor_obj_5000.weights -thresh 0.15
Other models by the link: https://pjreddie.com/darknet/yolo/