Reed-Solomon erasure coding based on Leopard-RS, featuring:
O(n log n)
complexity.original_count |
recovery_count |
---|---|
<= 2^16 - 2^n |
<= 2^n |
<= 61440 |
<= 4096 |
<= 57344 |
<= 8192 |
<= 49152 |
<= 16384 |
<= 32768 |
<= 32768 |
<= 16384 |
<= 49152 |
<= 8192 |
<= 57344 |
<= 4096 |
<= 61440 |
<= 2^n |
<= 2^16 - 2^n |
Original : Recovery | Encode | Decode (1% loss; 100% loss) |
---|---|---|
32: 32 | 10.237 GiB/s | 254.24 MiB/s ; 253.60 MiB/s |
64: 64 | 8.6758 GiB/s | 459.18 MiB/s ; 456.83 MiB/s |
128 : 128 | 7.3891 GiB/s | 753.11 MiB/s ; 758.65 MiB/s |
256 : 256 | 6.3753 GiB/s | 1.0391 GiB/s ; 1.0323 GiB/s |
512 : 512 | 5.5076 GiB/s | 1.1862 GiB/s ; 1.2542 GiB/s |
1024 : 1024 | 4.8495 GiB/s | 1.3017 GiB/s ; 1.4178 GiB/s |
2048 : 2048 | 4.3733 GiB/s | 1.3341 GiB/s ; 1.4640 GiB/s |
4096 : 4096 | 3.9926 GiB/s | 1.2008 GiB/s ; 1.3585 GiB/s |
8192 : 8192 | 3.1220 GiB/s | 942.68 MiB/s ; 1012.5 MiB/s |
16384 : 16384 | 2.2468 GiB/s | 701.36 MiB/s ; 687.75 MiB/s |
32 768 : 32 768 | 1.6049 GiB/s | 681.39 MiB/s ; 667.93 MiB/s |
128 : 1 024 | 6.4068 GiB/s | 857.36 MiB/s ; 856.25 MiB/s |
1 000 : 100 | 5.6079 GiB/s | 1021.7 MiB/s ; 1022.0 MiB/s |
1 000 : 10 000 | 4.0041 GiB/s | 1012.7 MiB/s ; 1014.9 MiB/s |
8 192 : 57 344 | 2.3174 GiB/s | 706.97 MiB/s ; 704.85 MiB/s |
10 000 : 1 000 | 2.9598 GiB/s | 924.42 MiB/s ; 942.26 MiB/s |
57 344 : 8 192 | 1.8894 GiB/s | 657.89 MiB/s ; 664.97 MiB/s |
add_original_shard
and
encode
of ReedSolomonEncoder
.add_original_shard
,
add_recovery_shard
and
decode
of ReedSolomonDecoder
.I invite you to clone reed-solomon-simd and run your own benchmark:
$ cargo bench main
shard.len() % 2 == 0
).reed_solomon_simd::encode
.reed_solomon_simd::decode
.
Note: This crate does not detect or correct errors within a shard. So if data corruption is a likely scenario, you should include an error detection hash with each shard, and skip feeding the corrupted shards to the decoder. Here are a few suggestions for very fast error detection hashes: CRC32c (4 bytes), HighwayHash (8, 16 or 32 bytes) or xxHash (4, 8 or 16 bytes).
Divide data into 3 original shards of 64 bytes each and generate 5 recovery shards. Assume then that original shards #0 and #2 are lost and restore them by providing 1 original shard and 2 recovery shards.
let original = [
b"Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do ",
b"eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut e",
b"nim ad minim veniam, quis nostrud exercitation ullamco laboris n",
];
let recovery = reed_solomon_simd::encode(
3, // total number of original shards
5, // total number of recovery shards
original, // all original shards
)?;
let restored = reed_solomon_simd::decode(
3, // total number of original shards
5, // total number of recovery shards
[ // provided original shards with indexes
(1, &original[1]),
],
[ // provided recovery shards with indexes
(1, &recovery[1]),
(4, &recovery[4]),
],
)?;
assert_eq!(restored[&0], original[0]);
assert_eq!(restored[&2], original[2]);
# Ok::<(), reed_solomon_simd::Error>(())
ReedSolomonEncoder
and ReedSolomonDecoder
give more control
of the encoding/decoding process.
Here's the above example using these instead:
use reed_solomon_simd::{ReedSolomonDecoder, ReedSolomonEncoder};
use std::collections::HashMap;
let original = [
b"Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do ",
b"eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut e",
b"nim ad minim veniam, quis nostrud exercitation ullamco laboris n",
];
let mut encoder = ReedSolomonEncoder::new(
3, // total number of original shards
5, // total number of recovery shards
64, // shard size in bytes
)?;
for shard in original {
encoder.add_original_shard(shard)?;
}
let result = encoder.encode()?;
let recovery: Vec<_> = result.recovery_iter().collect();
let mut decoder = ReedSolomonDecoder::new(
3, // total number of original shards
5, // total number of recovery shards
64, // shard size in bytes
)?;
decoder.add_original_shard(1, original[1])?;
decoder.add_recovery_shard(1, recovery[1])?;
decoder.add_recovery_shard(4, recovery[4])?;
let result = decoder.decode()?;
let restored: HashMap<_, _> = result.restored_original_iter().collect();
assert_eq!(restored[&0], original[0]);
assert_eq!(restored[&2], original[2]);
# Ok::<(), reed_solomon_simd::Error>(())
See rate
module for advanced encoding/decoding
using chosen Engine
and Rate
.
Use cargo run --release --example quick-comparison
to run few simple benchmarks against reed-solomon-16
, reed-solomon-erasure
, reed-solomon-novelpoly
and leopard-codec
crates.
This crate is the fastest in all cases on my AMD Ryzen 5 3600, except in the case of decoding with about 42 or fewer recovery shards. There's also a one-time initialization (< 10 ms) for computing tables which can dominate at really small data amounts.
Some larger tests are marked #[ignore]
and are not run with cargo test
.
Use cargo test -- --ignored
to run those.
The only use of unsafe
in this crate is to allow for target specific optimizations in Ssse3
, Avx2
and Neon
.
Starting from version 3.0.0, shard sizes that are not multiples of 64 are supported. However, if your shard size is a multiple of 64, it remains compatible across all versions.
This crate is a fork Markus Laire's reed-solomon-16
crate, which in turn
is based on Leopard-RS by Christopher A. Taylor.