AssemblyAI / assemblyai-python-sdk

AssemblyAI's Official Python SDK
https://assemblyai.com
MIT License
146 stars 18 forks source link

CI Passing GitHub License PyPI version PyPI Python Versions PyPI - Wheel AssemblyAI Twitter AssemblyAI YouTube Discord

AssemblyAI's Python SDK

Build with AI models that can transcribe and understand audio

With a single API call, get access to AI models built on the latest AI breakthroughs to transcribe and understand audio and speech data securely at large scale.

Overview

Documentation

Visit our AssemblyAI API Documentation to get an overview of our models!

Quick Start

Installation

pip install -U assemblyai

Examples

Before starting, you need to set the API key. If you don't have one yet, sign up for one!

import assemblyai as aai

# set the API key
aai.settings.api_key = f"{ASSEMBLYAI_API_KEY}"

Core Examples

Transcribe a Local Audio File ```python import assemblyai as aai transcriber = aai.Transcriber() transcript = transcriber.transcribe("./my-local-audio-file.wav") print(transcript.text) ```
Transcribe an URL ```python import assemblyai as aai transcriber = aai.Transcriber() transcript = transcriber.transcribe("https://example.org/audio.mp3") print(transcript.text) ```
Transcribe binary data ```python import assemblyai as aai transcriber = aai.Transcriber() # Binary data is supported directly: transcript = transcriber.transcribe(data) # Or: Upload data separately: upload_url = transcriber.upload_file(data) transcript = transcriber.transcribe(upload_url) ```
Export Subtitles of an Audio File ```python import assemblyai as aai transcriber = aai.Transcriber() transcript = transcriber.transcribe("https://example.org/audio.mp3") # in SRT format print(transcript.export_subtitles_srt()) # in VTT format print(transcript.export_subtitles_vtt()) ```
List all Sentences and Paragraphs ```python import assemblyai as aai transcriber = aai.Transcriber() transcript = transcriber.transcribe("https://example.org/audio.mp3") sentences = transcript.get_sentences() for sentence in sentences: print(sentence.text) paragraphs = transcript.get_paragraphs() for paragraph in paragraphs: print(paragraph.text) ```
Search for Words in a Transcript ```python import assemblyai as aai transcriber = aai.Transcriber() transcript = transcriber.transcribe("https://example.org/audio.mp3") matches = transcript.word_search(["price", "product"]) for match in matches: print(f"Found '{match.text}' {match.count} times in the transcript") ```
Add Custom Spellings on a Transcript ```python import assemblyai as aai config = aai.TranscriptionConfig() config.set_custom_spelling( { "Kubernetes": ["k8s"], "SQL": ["Sequel"], } ) transcriber = aai.Transcriber() transcript = transcriber.transcribe("https://example.org/audio.mp3", config) print(transcript.text) ```
Upload a file ```python import assemblyai as aai transcriber = aai.Transcriber() upload_url = transcriber.upload_file(data) ```
Delete a transcript ```python import assemblyai as aai transcript = aai.Transcriber().transcribe(audio_url) aai.Transcript.delete_by_id(transcript.id) ```
List transcripts This returns a page of transcripts you created. ```python import assemblyai as aai transcriber = aai.Transcriber() page = transcriber.list_transcripts() print(page.page_details) # Page details print(page.transcripts) # List of transcripts ``` You can apply filter parameters: ```python params = aai.ListTranscriptParameters( limit=3, status=aai.TranscriptStatus.completed, ) page = transcriber.list_transcripts(params) ``` You can also paginate over all pages by using the helper property `before_id_of_prev_url`. The `prev_url` always points to a page with older transcripts. If you extract the `before_id` of the `prev_url` query parameters, you can paginate over all pages from newest to oldest. ```python transcriber = aai.Transcriber() params = aai.ListTranscriptParameters() page = transcriber.list_transcripts(params) while page.page_details.before_id_of_prev_url is not None: params.before_id = page.page_details.before_id_of_prev_url page = transcriber.list_transcripts(params) ```

LeMUR Examples

Use LeMUR to Summarize Multiple Transcripts ```python import assemblyai as aai transcriber = aai.Transcriber() transcript_group = transcriber.transcribe_group( [ "https://example.org/customer1.mp3", "https://example.org/customer2.mp3", ], ) result = transcript_group.lemur.summarize( context="Customers asking for cars", answer_format="TLDR" ) print(result.response) ```
Use LeMUR to Ask Questions on a Single Transcript ```python import assemblyai as aai transcriber = aai.Transcriber() transcript = transcriber.transcribe("https://example.org/customer.mp3") # ask some questions questions = [ aai.LemurQuestion(question="What car was the customer interested in?"), aai.LemurQuestion(question="What price range is the customer looking for?"), ] result = transcript.lemur.question(questions) for q in result.response: print(f"Question: {q.question}") print(f"Answer: {q.answer}") ```
Use LeMUR to Ask for Action Items from a Single Transcript ```python import assemblyai as aai transcriber = aai.Transcriber() transcript = transcriber.transcribe("https://example.org/customer.mp3") result = transcript.lemur.action_items( context="Customers asking for help with resolving their problem", answer_format="Three bullet points", ) print(result.response) ```
Use LeMUR to Ask Anything with a Custom Prompt ```python import assemblyai as aai transcriber = aai.Transcriber() transcript = transcriber.transcribe("https://example.org/customer.mp3") result = transcript.lemur.task( "You are a helpful coach. Provide an analysis of the transcript " "and offer areas to improve with exact quotes. Include no preamble. " "Start with an overall summary then get into the examples with feedback.", ) print(result.response) ```
Use LeMUR to with Input Text ```python import assemblyai as aai transcriber = aai.Transcriber() config = aai.TranscriptionConfig( speaker_labels=True, ) transcript = transcriber.transcribe("https://example.org/customer.mp3", config=config) # Example converting speaker label utterances into LeMUR input text text = "" for utt in transcript.utterances: text += f"Speaker {utt.speaker}:\n{utt.text}\n" result = aai.Lemur().task( "You are a helpful coach. Provide an analysis of the transcript " "and offer areas to improve with exact quotes. Include no preamble. " "Start with an overall summary then get into the examples with feedback.", input_text=text ) print(result.response) ```
Delete data previously sent to LeMUR ```python import assemblyai as aai # Create a transcript and a corresponding LeMUR request that may contain senstive information. transcriber = aai.Transcriber() transcript_group = transcriber.transcribe_group( [ "https://example.org/customer1.mp3", ], ) result = transcript_group.lemur.summarize( context="Customers providing sensitive, personally identifiable information", answer_format="TLDR" ) # Get the request ID from the LeMUR response request_id = result.request_id # Now we can delete the data about this request deletion_result = aai.Lemur.purge_request_data(request_id) print(deletion_result) ```

Audio Intelligence Examples

PII Redact a Transcript ```python import assemblyai as aai config = aai.TranscriptionConfig() config.set_redact_pii( # What should be redacted policies=[ aai.PIIRedactionPolicy.credit_card_number, aai.PIIRedactionPolicy.email_address, aai.PIIRedactionPolicy.location, aai.PIIRedactionPolicy.person_name, aai.PIIRedactionPolicy.phone_number, ], # How it should be redacted substitution=aai.PIISubstitutionPolicy.hash, ) transcriber = aai.Transcriber() transcript = transcriber.transcribe("https://example.org/audio.mp3", config) ``` To request a copy of the original audio file with the redacted information "beeped" out, set `redact_pii_audio=True` in the config. Once the `Transcript` object is returned, you can access the URL of the redacted audio file with `get_redacted_audio_url`, or save the redacted audio directly to disk with `save_redacted_audio`. ```python import assemblyai as aai transcript = aai.Transcriber().transcribe( "https://example.org/audio.mp3", config=aai.TranscriptionConfig( redact_pii=True, redact_pii_policies=[aai.PIIRedactionPolicy.person_name], redact_pii_audio=True ) ) redacted_audio_url = transcript.get_redacted_audio_url() transcript.save_redacted_audio("redacted_audio.mp3") ``` [Read more about PII redaction here.](https://www.assemblyai.com/docs/Models/pii_redaction)
Summarize the content of a transcript over time ```python import assemblyai as aai transcriber = aai.Transcriber() transcript = transcriber.transcribe( "https://example.org/audio.mp3", config=aai.TranscriptionConfig(auto_chapters=True) ) for chapter in transcript.chapters: print(f"Summary: {chapter.summary}") # A one paragraph summary of the content spoken during this timeframe print(f"Start: {chapter.start}, End: {chapter.end}") # Timestamps (in milliseconds) of the chapter print(f"Healine: {chapter.headline}") # A single sentence summary of the content spoken during this timeframe print(f"Gist: {chapter.gist}") # An ultra-short summary, just a few words, of the content spoken during this timeframe ``` [Read more about auto chapters here.](https://www.assemblyai.com/docs/Models/auto_chapters)
Summarize the content of a transcript ```python import assemblyai as aai transcriber = aai.Transcriber() transcript = transcriber.transcribe( "https://example.org/audio.mp3", config=aai.TranscriptionConfig(summarization=True) ) print(transcript.summary) ``` By default, the summarization model will be `informative` and the summarization type will be `bullets`. [Read more about summarization models and types here](https://www.assemblyai.com/docs/Models/summarization#types-and-models). To change the model and/or type, pass additional parameters to the `TranscriptionConfig`: ```python config=aai.TranscriptionConfig( summarization=True, summary_model=aai.SummarizationModel.catchy, summary_type=aai.SummarizationType.headline ) ```
Detect Sensitive Content in a Transcript ```python import assemblyai as aai transcriber = aai.Transcriber() transcript = transcriber.transcribe( "https://example.org/audio.mp3", config=aai.TranscriptionConfig(content_safety=True) ) # Get the parts of the transcript which were flagged as sensitive for result in transcript.content_safety.results: print(result.text) # sensitive text snippet print(result.timestamp.start) print(result.timestamp.end) for label in result.labels: print(label.label) # content safety category print(label.confidence) # model's confidence that the text is in this category print(label.severity) # severity of the text in relation to the category # Get the confidence of the most common labels in relation to the entire audio file for label, confidence in transcript.content_safety.summary.items(): print(f"{confidence * 100}% confident that the audio contains {label}") # Get the overall severity of the most common labels in relation to the entire audio file for label, severity_confidence in transcript.content_safety.severity_score_summary.items(): print(f"{severity_confidence.low * 100}% confident that the audio contains low-severity {label}") print(f"{severity_confidence.medium * 100}% confident that the audio contains mid-severity {label}") print(f"{severity_confidence.high * 100}% confident that the audio contains high-severity {label}") ``` [Read more about the content safety categories.](https://www.assemblyai.com/docs/Models/content_moderation#all-labels-supported-by-the-model) By default, the content safety model will only include labels with a confidence greater than 0.5 (50%). To change this, pass `content_safety_confidence` (as an integer percentage between 25 and 100, inclusive) to the `TranscriptionConfig`: ```python config=aai.TranscriptionConfig( content_safety=True, content_safety_confidence=80, # only include labels with a confidence greater than 80% ) ```
Analyze the Sentiment of Sentences in a Transcript ```python import assemblyai as aai transcriber = aai.Transcriber() transcript = transcriber.transcribe( "https://example.org/audio.mp3", config=aai.TranscriptionConfig(sentiment_analysis=True) ) for sentiment_result in transcript.sentiment_analysis: print(sentiment_result.text) print(sentiment_result.sentiment) # POSITIVE, NEUTRAL, or NEGATIVE print(sentiment_result.confidence) print(f"Timestamp: {sentiment_result.start} - {sentiment_result.end}") ``` If `speaker_labels` is also enabled, then each sentiment analysis result will also include a `speaker` field. ```python # ... config = aai.TranscriptionConfig(sentiment_analysis=True, speaker_labels=True) # ... for sentiment_result in transcript.sentiment_analysis: print(sentiment_result.speaker) ``` [Read more about sentiment analysis here.](https://www.assemblyai.com/docs/Models/sentiment_analysis)
Identify Entities in a Transcript ```python import assemblyai as aai transcriber = aai.Transcriber() transcript = transcriber.transcribe( "https://example.org/audio.mp3", config=aai.TranscriptionConfig(entity_detection=True) ) for entity in transcript.entities: print(entity.text) # i.e. "Dan Gilbert" print(entity.entity_type) # i.e. EntityType.person print(f"Timestamp: {entity.start} - {entity.end}") ``` [Read more about entity detection here.](https://www.assemblyai.com/docs/Models/entity_detection)
Detect Topics in a Transcript (IAB Classification) ```python import assemblyai as aai transcriber = aai.Transcriber() transcript = transcriber.transcribe( "https://example.org/audio.mp3", config=aai.TranscriptionConfig(iab_categories=True) ) # Get the parts of the transcript that were tagged with topics for result in transcript.iab_categories.results: print(result.text) print(f"Timestamp: {result.timestamp.start} - {result.timestamp.end}") for label in result.labels: print(label.label) # topic print(label.relevance) # how relevant the label is for the portion of text # Get a summary of all topics in the transcript for label, relevance in transcript.iab_categories.summary.items(): print(f"Audio is {relevance * 100}% relevant to {label}") ``` [Read more about IAB classification here.](https://www.assemblyai.com/docs/Models/iab_classification)
Identify Important Words and Phrases in a Transcript ```python import assemblyai as aai transcriber = aai.Transcriber() transcript = transcriber.transcribe( "https://example.org/audio.mp3", config=aai.TranscriptionConfig(auto_highlights=True) ) for result in transcript.auto_highlights.results: print(result.text) # the important phrase print(result.rank) # relevancy of the phrase print(result.count) # number of instances of the phrase for timestamp in result.timestamps: print(f"Timestamp: {timestamp.start} - {timestamp.end}") ``` [Read more about auto highlights here.](https://www.assemblyai.com/docs/Models/key_phrases)

Real-Time Examples

Read more about our Real-Time service.

Stream your Microphone in Real-Time ```python import assemblyai as aai def on_open(session_opened: aai.RealtimeSessionOpened): "This function is called when the connection has been established." print("Session ID:", session_opened.session_id) def on_data(transcript: aai.RealtimeTranscript): "This function is called when a new transcript has been received." if not transcript.text: return if isinstance(transcript, aai.RealtimeFinalTranscript): print(transcript.text, end="\r\n") else: print(transcript.text, end="\r") def on_error(error: aai.RealtimeError): "This function is called when an error occurs." print("An error occured:", error) def on_close(): "This function is called when the connection has been closed." print("Closing Session") # Create the Real-Time transcriber transcriber = aai.RealtimeTranscriber( on_data=on_data, on_error=on_error, sample_rate=44_100, on_open=on_open, # optional on_close=on_close, # optional ) # Start the connection transcriber.connect() # Open a microphone stream microphone_stream = aai.extras.MicrophoneStream() # Press CTRL+C to abort transcriber.stream(microphone_stream) transcriber.close() ```
Transcribe a Local Audio File in Real-Time ```python import assemblyai as aai def on_data(transcript: aai.RealtimeTranscript): "This function is called when a new transcript has been received." if not transcript.text: return if isinstance(transcript, aai.RealtimeFinalTranscript): print(transcript.text, end="\r\n") else: print(transcript.text, end="\r") def on_error(error: aai.RealtimeError): "This function is called when the connection has been closed." print("An error occured:", error) # Create the Real-Time transcriber transcriber = aai.RealtimeTranscriber( on_data=on_data, on_error=on_error, sample_rate=44_100, ) # Start the connection transcriber.connect() # Only WAV/PCM16 single channel supported for now file_stream = aai.extras.stream_file( filepath="audio.wav", sample_rate=44_100, ) transcriber.stream(file_stream) transcriber.close() ```
End-of-utterance controls ```python transcriber = aai.RealtimeTranscriber(...) # Manually end an utterance and immediately produce a final transcript. transcriber.force_end_utterance() # Configure the threshold for automatic utterance detection. transcriber = aai.RealtimeTranscriber( ..., end_utterance_silence_threshold=500 ) # Can be changed any time during a session. # The valid range is between 0 and 20000. transcriber.configure_end_utterance_silence_threshold(300) ```
Disable partial transcripts ```python # Set disable_partial_transcripts to `True` transcriber = aai.RealtimeTranscriber( ..., disable_partial_transcripts=True ) ```
Enable extra session information ```python # Define a callback to handle the extra session information message def on_extra_session_information(data: aai.RealtimeSessionInformation): "This function is called when a session information message has been received." print(data.audio_duration_seconds) # Configure the RealtimeTranscriber transcriber = aai.RealtimeTranscriber( ..., on_extra_session_information=on_extra_session_information, ) ```

Playgrounds

Visit one of our Playgrounds:

Advanced

How the SDK handles Default Configurations

Defining Defaults

When no TranscriptionConfig is being passed to the Transcriber or its methods, it will use a default instance of a TranscriptionConfig.

If you would like to re-use the same TranscriptionConfig for all your transcriptions, you can set it on the Transcriber directly:

config = aai.TranscriptionConfig(punctuate=False, format_text=False)

transcriber = aai.Transcriber(config=config)

# will use the same config for all `.transcribe*(...)` operations
transcriber.transcribe("https://example.org/audio.wav")

Overriding Defaults

You can override the default configuration later via the .config property of the Transcriber:

transcriber = aai.Transcriber()

# override the `Transcriber`'s config with a new config
transcriber.config = aai.TranscriptionConfig(punctuate=False, format_text=False)

In case you want to override the Transcriber's configuration for a specific operation with a different one, you can do so via the config parameter of a .transcribe*(...) method:

config = aai.TranscriptionConfig(punctuate=False, format_text=False)
# set a default configuration
transcriber = aai.Transcriber(config=config)

transcriber.transcribe(
    "https://example.com/audio.mp3",
    # overrides the above configuration on the `Transcriber` with the following
    config=aai.TranscriptionConfig(dual_channel=True, disfluencies=True)
)

Synchronous vs Asynchronous

Currently, the SDK provides two ways to transcribe audio files.

The synchronous approach halts the application's flow until the transcription has been completed.

The asynchronous approach allows the application to continue running while the transcription is being processed. The caller receives a concurrent.futures.Future object which can be used to check the status of the transcription at a later time.

You can identify those two approaches by the _async suffix in the Transcriber's method name (e.g. transcribe vs transcribe_async).

Polling Intervals

By default we poll the Transcript's status each 3s. In case you would like to adjust that interval:

import assemblyai as aai

aai.settings.polling_interval = 1.0

Retrieving Existing Transcripts

Retrieving a Single Transcript

If you previously created a transcript, you can use its ID to retrieve it later.

import assemblyai as aai

transcript = aai.Transcript.get_by_id("<TRANSCRIPT_ID>")

print(transcript.id)
print(transcript.text)

Retrieving Multiple Transcripts as a Group

You can also retrieve multiple existing transcripts and combine them into a single TranscriptGroup object. This allows you to perform operations on the transcript group as a single unit, such as querying the combined transcripts with LeMUR.

import assemblyai as aai

transcript_group = aai.TranscriptGroup.get_by_ids(["<TRANSCRIPT_ID_1>", "<TRANSCRIPT_ID_2>"])

summary = transcript_group.lemur.summarize(context="Customers asking for cars", answer_format="TLDR")

print(summary)

Retrieving Transcripts Asynchronously

Both Transcript.get_by_id and TranscriptGroup.get_by_ids have asynchronous counterparts, Transcript.get_by_id_async and TranscriptGroup.get_by_ids_async, respectively. These functions immediately return a Future object, rather than blocking until the transcript(s) are retrieved.

See the above section on Synchronous vs Asynchronous for more information.