BIMSBbioinfo / bavaria

Batch-adversarial variational auto-encoder (BAVARIA) for simultaneous dimensionality reduction and integration of single-cell ATAC-seq datasets
Other
12 stars 5 forks source link

======== BAVARIA

BAVARIA is python package that implements a Batch-adversarial Variational auto-encoder with Negative Multinomial reconstruction loss for single-cell ATAC-seq analysis.

.. image:: bavaria_scheme.svg :width: 600

In particular, the model can be used to extract a latent feature representation of a cell which can be used for downstream analysis tasks, including cell cluster, cell identification, etc. The package is freely available under a GNU Lesser General Public License v3 or later (LGPLv3+)

Installation

You can install the package version v0.1.0 via

::

pip install https://github.com/BIMSBbioinfo/bavaria/archive/v0.1.0.zip

Alternatively, you can install the latest version from the master branch using

::

pip install git+https://github.com/BIMSBbioinfo/bavaria.git

Documentation

BAVARIA offers a command line interface that fits an ensemble of BAVARIA models given a raw count matrix (-data) Subsequently, the model parameters and latent features are stored in the output directory (-output)

::

bavaria -data adata.h5ad \ -output \ -epochs 200 \ -nrepeats 10 \ -nlatent 15 \ -batchnames batch \ -modelname bavaria

Additional information on available hyper-parameters are available through

::

bavaria -h

Tutorial

Below you find links to the tutorials. The tutorials will require jupyter and other resources which are defined in :code:tutorial/requirements.txt. Using the requirements file you instantiate a new conda environment using

.. code:: bash

conda create --name bavaria_tutorial --file tutorial/requirements.txt

+----------------------------------------------------+ | Example notebooks | +====================================================+ | Data preparation PBMC integration | +----------------------------------------------------+ | Using BAVARIA to integrate PBMC data | +----------------------------------------------------+

.. _Data preparation PBMC integration: https://nbviewer.jupyter.org/github/BIMSBbioinfo/bavaria/blob/master/tutorial/00_preparation.ipynb .. _Using BAVARIA to integrate PBMC data: https://nbviewer.jupyter.org/github/BIMSBbioinfo/bavaria/blob/master/tutorial/01_pbmc_integration.ipynb