BNLNPPS / esi-shell

Apache License 2.0
0 stars 0 forks source link

esi-shell

The goal of this project is to provide a stable containerized environment for reproducible simulation jobs levereging on the Geant4 and NVIDIA OptiX ray tracing capabilities.

Prerequisites

Before starting, make sure you have the following prerequisites available and installed:

Quick start

The installer script for the esi-shell container is available directly at bnlnpps.github.io/esi-shell/. It can be downloaded and then made executable:

curl -Os https://bnlnpps.github.io/esi-shell/esi-shell && chmod u+x esi-shell

The esi-shell environment can be used interactively by running the script:

./esi-shell

Once the container is up, you can execute the code relying on GPU functionality, e.g. run the available tests:

opticks-full-prepare
opticks-t

It is also possible to run any container command non-interactively:

./esi-shell "opticks-full-prepare && opticks-t"

Use the -h/--help option to get a quick summary of available options and to learn how to pass arguments to the underlying container, e.g.:

./esi-shell --help
./esi-shell -- -v $HOME/out:/tmp/results

For developers

If you plan to develop the code utilizing GPU capabilities, you will likely need to install NVIDIA OptiX. Place the downloaded file on the same path where you cloned github.com/BNLNPPS/esi-shell:

cd esi-shell
ls
... NVIDIA-OptiX-SDK-7.6.0-linux64-x86_64.sh ...

Now, the esi-shell image can be built locally

docker build -t esi-shell .

For local development with OptiX, install it on your host system. We recommend installing OptiX in /usr/local/optix but any other path will be as good:

export OPTIX_DIR=$HOME/optix
mkdir -p $OPTIX_DIR
./NVIDIA-OptiX-SDK-7.6.0-linux64-x86_64.sh --prefix=$OPTIX_DIR

When running esi-shell, make sure that the environment variable OPTIX_DIR is configured to point to the directory where OptiX is installed. If not set, the default path OPTIX_DIR=/usr/local/optix will be mounted insdie the container at runtime.

Using esi-shell Docker Images

The esi-shell script streamlines the process of setting up a GPU-enabled Geant4 simulation environment, but you can also directly work with the esi-shell Docker images if preferred. These images can be pulled from the registry and used independently of the script.

To run a tagged image with your local NVIDIA OptiX installation, use the following command:

docker run --rm -it --gpus all -v /usr/local/optix:$OPTIX_DIR ghcr.io/bnlnpps/esi-shell:<tag>

This command is equivalent to using the shorter esi-shell command:

esi-shell -t <tag>

A complete list of available tagged releases can be found here.

To run the container on a remote host (HOST), set the DOCKER_HOST environment variable. For example, if you have SSH access to a GPU-capable host, prepend your docker or esi-shell commands with DOCKER_HOST:

DOCKER_HOST=ssh://HOST docker run ghcr.io/bnlnpps/esi-shell
DOCKER_HOST=ssh://HOST esi-shell

To enable X11 forwarding, pass your local DISPLAY and HOME environment variables to the container:

docker run -e DISPLAY=$DISPLAY -v $HOME/.Xauthority:/esi/.Xauthority --net=host ghcr.io/bnlnpps/esi-shell

These arguments can also be passed to esi-shell after the -- option divider. When running the container on a remote host, use the environment variables defined on that host:

DOCKER_HOST=ssh://HOST esi-shell -- -e DISPLAY=$(ssh HOST 'echo $DISPLAY') -v $(ssh HOST 'echo $HOME')/.Xauthority:/esi/.Xauthority --net=host

Opticks

One can get familiar with Opticks by running provided tests and examining the produced output. For example, in the properly setup environment do:

opticks-full-prepare
opticks/g4cx/tests/G4CXTest_raindrop.sh
python -i opticks/g4cx/tests/G4CXOpticks_setGeometry_Test.py
import plotly.graph_objects as go
from opticks.CSG.CSGFoundry import CSGFoundry

cf = CSGFoundry.Load("/path/to/csg_tree")

tri = cf.sim.stree.mesh.G4_WATER_solid.tri
vtx = cf.sim.stree.mesh.G4_WATER_solid.vtx
m = go.Mesh3d(x=vtx.T[0], y=vtx.T[1], z=vtx.T[2], i=tri.T[0], j=tri.T[1], k=tri.T[2], color='green', opacity=0.2)
fig = go.Figure(data=[m])
fig.show()