Source code for WWW2021 paper "Graph Structure Estimation Neural Networks"
GEN/
├── code/
│ ├── train.py: training the GEN model
│ ├── models.py: implementation of GEN and backbone GNNs
│ ├── utils.py
│ ├── generator.py: generating dataset based on attribute SBM
│ ├── nx.py: saving graph structure as .gexf files for Gephi
│ └── heatmap.py: generating heatmaps of community matrices
├── data/
│ ├── ind.cora.x: cora dataset
│ ├── ind.cora.y
│ ├── ind.cora.tx
│ ├── ind.cora.ty
│ ├── ind.cora.allx
│ ├── ind.cora.ally
│ ├── ind.cora.graph
│ ├── ind.cora.test.index
│ ├── ind.citeseer.x: citeseer dataset
│ ├── ind.citeseer.y
│ ├── ind.citeseer.tx
│ ├── ind.citeseer.ty
│ ├── ind.citeseer.allx
│ ├── ind.citeseer.ally
│ ├── ind.citeseer.graph
│ ├── ind.citeseer.test.index
│ ├── ind.pubmed.x: pubmed dataset
│ ├── ind.pubmed.y
│ ├── ind.pubmed.tx
│ ├── ind.pubmed.ty
│ ├── ind.pubmed.allx
│ ├── ind.pubmed.ally
│ ├── ind.pubmed.graph
│ ├── ind.pubmed.test.index
│ ├── squirrel_node_feature_label.txt: squirrel dataset
│ ├── squirrel_graph_edges.txt
│ ├── chameleon_node_feature_label.txt: chameleon dataset
│ ├── chameleon_graph_edges.txt
│ ├── actor_node_feature_label.txt: actor dataset
│ ├── actor_graph_edges.txt
│ ├── sbm.p: synthetic dataset
│ └── sbm_adj.p: graph structure estimated by GEN
└── README.md
python ./code/train.py
There are three key hyper-parameters: k, threshold and tolerance.
For the hyper-parameter settings of six benchmark datasets used in this paper, please refer to Section 4.4.
@inproceedings{wang2021graph,
title={Graph Structure Estimation Neural Networks},
author={Wang, Ruijia and Mou, Shuai and Wang, Xiao and Xiao, Wanpeng and Ju, Qi and Shi, Chuan and Xie, Xing},
booktitle={Proceedings of the Web Conference 2021},
pages={342--353},
year={2021}
}