Bilallbayrakdar / ShipYOLO

Other
3 stars 0 forks source link

Paper: ShipYOLO: An Enhanced Model for Ship Detection

DOI: https://doi.org/10.1155/2021/1060182

Xu Han, "ShipYOLO: An Enhanced Model for Ship Detection," Journal of Advanced Transportation, vol. 2021, Article ID 1060182, 11 pages, 2021. https://doi.org/10.1155/2021/1060182.

Bibtex

@article{
    author    = {Xu Han and Lining Zhao and Yue Ning and Jingfeng Hu}, 
    title     = {{ShipYOLO}: An Enhanced Model for Ship Detection}, 
    journal   = {Journal of Advanced Transportation},
    month     = {jun},  
    year      = {2021},
    pages     = {1--11}
    }

completed

ongoing

Results and Models

Inference in NVIDIA GeForce RTX 3060 Laptop GPU.

Dataset

Model Size $mAP_{coco}$ $mAP_{coco}@50$ $mAP_{coco}@75$ FPS Config Datasets Download
YOLOv4 512 0.251 0.582 0.173 34.50 mmdet WSODD ------
ShipYOLO 512 0.296 0.615 0.237 44.96 mmdet WSODD ------
ShipYOLOV2 512 0.296 0.617 0.241 44.20 mmdet WSODD ------
- 512 0.423 0.780 0.391 44.20 mosaic+aug WSODD ------

1. Installation related environment

pip install -r requirements.txt

2. Train

bash run_train.sh

python re_pth.py

3. demo

import torch
from models.shipyolo.shipyolo import ShipYOLOv2
from utils.general import non_max_suppression

'''
Train deploy=False
Test  deploy=True
'''
x = torch.rand(1, 3, 288, 512).cuda()
model = ShipYOLOv2(num_classes=14, deploy=True).cuda()
output = model(x)  # without nms
output = non_max_suppression(output[0], conf_thres=0.001, iou_thres=0.5)

4. structure

The old version of the code(ShipYOLO) is in "project/ShipYOLO".

We also built the code(ShipYOLO-mmdet) based on mmdetection which is in "project/ShipYOLO-mmdet".

Acknowledgements

Communication