Byeonghyun Pak*, Jaewon Lee*, Kyong Hwan Jin\ Daegu Gyeongbuk Institute of Science and Technology (DGIST)\ CVPR 2023, Highlight
Project Page
] [Paper
]mkdir ../Data
for putting the dataset folders.
cd ../Data
and download the datasets (SCI1K, SCID, and SIQAD) from this repo.
For the additional benchmarks in Tab 6, follow Data instruction provided by this repo.
python demo.py --input [INPUT] --model [MODEL] --scale [SCALE] --output output.png --gpu [GPU]
[INPUT]
: input image's path (e.g. --input input.png
).[MODEL]
: to define the pre-trained model (e.g. --model rdn+btc-3rd.pth
).[SCALE]
: arbitrary magnification (e.g. --scale 3
or --scale 6.4
).[GPU]
: to specify the GPUS (e.g. --gpu 0
).python train.py --config configs/train/[TRAIN_CONFIG] --gpu [GPU]
[TRAIN_CONFIG]
: to define model configuration (e.g. train-rdn+btc-3rd.yaml
).[GPU]
: to specify the GPUS (e.g. --gpu 0
or --gpu 0,1
).
python test.py --config configs/test/[TEST_CONFIG] --model save/[MODEL] --gpu [GPU]
[TEST_CONFIG]
: to define test configuration (e.g. test-sci1k-02.yaml
for SCI1K dataset on x2).[MODEL]
: to define the pre-trained model (e.g. rdn+btc-3rd/epoch_last.pth
).[GPU]
: to specify the GPUS (e.g. --gpu 0
or --gpu 0,1
).If you find our code helpful, please cite our paper:
@inproceedings{pak2023b,
title = {Textual Query-Driven Mask Transformer for Domain Generalized Segmentation},
author = {Pak, Byeonghyun and Lee, Jaewon and Jin, Kyong Hwan},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages = {10062--10071},
year = {2023}
}
This project is based on the following open-source projects. We thank the authors for sharing their codes.