This is a tool that generates a dataset of synthetic buildings of different typologies.
The generated data includes:
.obj
format.png
format.png
format.png
and .exr
format.png
format.ply
format (the number of points by default is 2048, can be changed in dataset_config.py
)git clone https://github.com/CDInstitute/CompoNET
*Navigate to the Building-Dataset-Generator
folder.
pip install -r requirements.txt
To create completely synthetic buildings use:
run.bat
Or:
blender setup.blend --python dataset.py
Unfortunately, it is not possible to use Blender in background mode as it will not render the image masks correctly.
Note:
all the parameters related to the dataset (including any specific parameters for your buildings (e.g. max and min height / width / length)) are to be provided in dataset_config.py
. Default values adhere to international standards (min) and most common European values (max):
{'img': 'images/0.png', 'category': 'building', 'img_size': (256, 256), '2d_keypoints': [], 'mask': 'masks/0.png', 'img_source': 'synthetic', 'model': 'models/0.obj', 'point_cloud': 'PointCloud/0.ply', 'model_source': 'synthetic', 'trans_mat': 0, 'focal_length': 35.0, 'cam_position': (0.0, 0.0, 0.0), 'inplane_rotation': 0, 'truncated': False, 'occluded': False, 'slightly_occluded': False, 'bbox': [0.0, 0.0, 0.0, 0.0], 'material': ['concrete', 'brick']}
We ran the dataset generation algorithm for 100 model samples with different input parameters on Windows 10 OS on CPU and GPU using AMD Ryzen 7 3800-X 8-Core Processor and GeForce GTX 1080. Here we report the results for the multiview generation (3 views per model):
GPU | Multiview | Time (h) |
---|---|---|
1.7 | ||
:white_check_mark: | 2.7 | |
:white_check_mark: | 0.34 | |
:white_check_mark: | :white_check_mark: | 0.8 |
Bibtex format
@inproceedings{fedorova2021synthetic,
title={Synthetic 3D Data Generation Pipeline for Geometric Deep Learning in Architecture},
author={Stanislava Fedorova and Alberto Tono and Meher Shashwat Nigam and Jiayao Zhang and Amirhossein Ahmadnia and Cecilia Bolognesi and Dominik L. Michels},
year={2021},
}