We are asked to develop the backend for an eCommerce website as a collection of RESTful services for a client. We are responsible for implementing the customer service The customer service is a representation of the customer accounts of the eCommerce site. At a minimum, it should have the customer's first and last name, along with a customer id that can be used as a key to uniquely identify them. It may even have a user ID and password. Customers also have at least one address, which can be just a long string.
This lab uses Docker and Visual Studio Code with the Remote Containers extension to provide a consistent repeatable disposable development environment for all of the labs in this course.
You will need the following software installed:
All of these can be installed manually by clicking on the links above or you can use a package manager like Homebrew on Mac of Chocolatey on Windows.
Alternately, you can use Vagrant and VirtualBox to create a consistent development environment in a virtual machine (VM).
You can read more about creating these environments in my article: Creating Reproducible Development Environments
Endpoint Methods Rule
---------------- ------- -----------------------------------------------------
index GET /
list_customers GET /customers
create_customer POST /customers
read_customer GET /customers/<int:customer_id>
update_customer PUT /customers/<int:customer_id>
delete_customer DELETE /customers/<int:customer_id>
To bring up the development environment you should clone this repo, change into the repo directory:
git clone git@github.com:CSCI-GA-2820-FA24-001/customers.git
cd customers
Depending on which development environment you created, pick from the following:
Open Visual Studio Code using the code .
command. VS Code will prompt you to reopen in a container and you should say yes. This will take a while as it builds the Docker image and creates a container from it to develop in.
code .
Note that there is a period .
after the code
command. This tells Visual Studio Code to open the editor and load the current folder of files.
Once the environment is loaded you should be placed at a bash
prompt in the /app
folder inside of the development container. This folder is mounted to the current working directory of your repository on your computer. This means that any file you edit while inside of the /app
folder in the container is actually being edited on your computer. You can then commit your changes to git
from either inside or outside of the container.
Bring up the virtual machine using Vagrant.
vagrant up
vagrant ssh
cd /vagrant
This will place you in the virtual machine in the /vagrant
folder which has been shared with your computer so that your source files can be edited outside of the VM and run inside of the VM.
As developers we always want to run the tests before we change any code. That way we know if we broke the code or if someone before us did. Always run the test cases first!
Run the unit tests using pytest
make test
PyTest is configured via the included setup.cfg
file to automatically include the --pspec
flag so that red-green-refactor is meaningful. If you are in a command shell that supports colors, passing tests will be green while failing tests will be red.
PyTest is also configured to automatically run the coverage
tool and you should see a percentage-of-coverage report at the end of your tests. If you want to see what lines of code were not tested use:
coverage report -m
This is particularly useful because it reports the line numbers for the code that have not been covered so you know which lines you want to target with new test cases to get higher code coverage.
You can also manually run pytest
with coverage
(but settings in pyporojrct.toml
do this already)
$ pytest --pspec --cov=service --cov-fail-under=95
Try and get as close to 100% coverage as you can.
It's also a good idea to make sure that your Python code follows the PEP8 standard. Both flake8
and pylint
have been included in the pyproject.toml
file so that you can check if your code is compliant like this:
make lint
Which does the equivalent of these commands:
flake8 service tests --count --select=E9,F63,F7,F82 --show-source --statistics
flake8 service tests --count --max-complexity=10 --max-line-length=127 --statistics
pylint service tests --max-line-length=127
Visual Studio Code is configured to use pylint
while you are editing. This catches a lot of errors while you code that would normally be caught at runtime. It's a good idea to always code with pylint active.
The project uses honcho
which gets it's commands from the Procfile
. To start the service simply use:
honcho start
As a convenience you can aso use:
make run
You should be able to reach the service at: http://localhost:8000. The port that is used is controlled by an environment variable defined in the .flaskenv
file which Flask uses to load it's configuration from the environment by default.
Deployment of our customers
service can be done in following steps:
make cluster
docker build -t customers:1.0 .
docker tag customers:1.0 cluster-registry:5000/customers:1.0
docker push cluster-registry:5000/customers:1.0
kubectl create namespace deployment
kubectl config set-context --current --namespace deployment
kubectl apply -f k8s/postgres
kubectl apply -f k8s
http://localhost:8080
for our customers
service that is deployed on local clusterkubectl get all
kubectl get pods
kubectl logs pod/<pod-name>
kubectl delete -f k8s/
kubectl delete -f k8s/postgres
environment
If you are using Visual Studio Code with Docker, simply existing Visual Studio Code will stop the docker containers. They will start up again the next time you need to develop as long as you don't manually delete them.
If you are using Vagrant and VirtualBox, when you are done, you can exit and shut down the vm with:
exit
vagrant halt
If the VM is no longer needed you can remove it with:
vagrant destroy
service/__init__.py
-- establishes the Flask app factoryservice/routes.py
-- the main Service routes using Python Flaskservice/models.py
-- the data model using SQLAlchemytests/test_routes.py
-- test cases against the Customer servicetests/test_models.py
-- test cases against the Customer modelCopyright (c) 2016, 2024 John Rofrano. All rights reserved.
Licensed under the Apache License. See LICENSE
This repository is part of the New York University (NYU) masters class: CSCI-GA.2820-001 DevOps and Agile Methodologies created and taught by John Rofrano, Adjunct Instructor, NYU Courant Institute, Graduate Division, Computer Science, and NYU Stern School of Business.