LDConv: Linear deformable convoluton for improving convolutioanl neural networks (Image and Vision Computing)
This repository is a PyTorch implementation of our paper: LDConv: Linear deformable convoluton for improving convolutioanl neural networks.
The relevant interpolation codes and resampling codes are referenced at https://github.com/dontLoveBugs/Deformable_ConvNet_pytorch.
The code has been opened, thank you for your support.
LDConv provides kernels of different sizes for efficient extraction of features.
Object detection based on COCO2017 and YOLOv5
Models |
LDConv |
AP50 |
AP75 |
AP |
APS |
APM |
APL |
GFLOPS |
Params (M) |
YOLOv5n (Baseline) |
- |
45.6 |
28.9 |
27.5 |
13.5 |
31.5 |
35.9 |
4.5 |
1.87 |
|
3 |
47.8 |
31 |
29.8 |
14.5 |
33.2 |
41 |
3.8 |
1.51 |
YOLOv5n |
5 |
48.8 |
32.6 |
31 |
14.6 |
34.1 |
43.2 |
4.1 |
1.65 |
|
9 |
50.5 |
33.9 |
32.3 |
14.9 |
36.1 |
44.1 |
4.8 |
1.94 |
|
13 |
51.2 |
34.5 |
33 |
15.7 |
36.3 |
45.6 |
5.5 |
2.23 |
YOLOv5s (Baseline) |
- |
57 |
39.9 |
37.1 |
20.9 |
42.4 |
47.8 |
16.4 |
7.23 |
|
4 |
58.2 |
41.9 |
39.2 |
21.4 |
43.2 |
53.4 |
14.1 |
6.01 |
YOLOv5s |
6 |
59.2 |
42.6 |
39.9 |
21.5 |
44.2 |
54.7 |
15.3 |
6.55 |
|
7 |
59.4 |
43.2 |
40.4 |
21.5 |
44.6 |
55.1 |
15.9 |
6.82 |
Object detection based on VOC 7+12 and YOLOv7
Models |
LDConv |
Precision |
Recall |
mAP50 |
mAP |
FLOPS |
Params |
YOLOv7-tiny (Baseline) |
- |
77.3 |
69.8 |
76.4 |
50.2 |
13.2 |
6.06 |
|
3 |
80.1 |
68.4 |
76.1 |
50.3 |
12.1 |
5.56 |
|
4 |
78.2 |
70.3 |
76.2 |
50.7 |
12.4 |
5.66 |
YOLOv7-tiny |
5 |
77 |
71.1 |
76.5 |
50.8 |
12.6 |
5.75 |
|
6 |
79.6 |
69.9 |
76.9 |
51 |
12.9 |
5.85 |
|
8 |
78.6 |
70.1 |
76.7 |
51.2 |
13.4 |
6.04 |
|
9 |
81 |
69.3 |
76.7 |
51.3 |
13.7 |
6.14 |
Object detection based on VisDrone-DET2021 and YOLOv5
Models |
LDConv |
Precision |
Recall |
mAP50 |
mAP |
FLOPS |
Params (M) |
YOLOv5n (Baseline) |
- |
38.5 |
28 |
26.4 |
13.4 |
4.2 |
1.77 |
|
3 |
37.9 |
27.4 |
25.9 |
13.2 |
3.5 |
1.41 |
|
5 |
40 |
28 |
26.9 |
13.7 |
3.8 |
1.56 |
|
6 |
38.1 |
28.1 |
26.8 |
13.6 |
4 |
1.63 |
YOLOv5n |
7 |
39.8 |
28.2 |
27.5 |
14.2 |
4.2 |
1.7 |
|
9 |
39.7 |
28.9 |
27.7 |
14.3 |
4.5 |
1.84 |
|
11 |
40.4 |
28.8 |
27.7 |
14.2 |
4.8 |
1.99 |
|
14 |
40 |
28.8 |
27.9 |
14.3 |
5.3 |
2.2 |
Comparison experiments
Models |
AP50 |
AP75 |
AP |
APS |
APM |
APL |
GFLOPS |
Params (M) |
YOLOv5s |
54.8 |
37.5 |
35 |
19.2 |
40 |
45.2 |
16.4 |
7.23 |
YOLOv5s (DSConv =5) |
43.2 |
23.5 |
23.9 |
13.0 |
27.6 |
30.5 |
14.8 |
6.45 |
YOLOv5s (LDConv=5) |
56.6 |
40.7 |
38 |
20.8 |
41.8 |
52 |
14.8 |
6.54 |
YOLOv5s (LDConv=9) |
57.8 |
41.4 |
38.7 |
20.8 |
42.8 |
52.3 |
17.1 |
7.37 |
YOLOv5s (LDConv=9, padding) |
58.3 |
41.9 |
39.2 |
21.6 |
43.2 |
53.5 |
17.1 |
7.37 |
YOLOv5s (Deformable Conv = 3) |
58.5 |
41.8 |
39.1 |
20.8 |
43.4 |
53.6 |
17.1 |
7.37 |
YOLOv5s (LDConv=11) |
58.5 |
42.1 |
39.3 |
21.9 |
43.3 |
53.8 |
18.3 |
7.91 |
YOLOv5s (LDConv=11, padding) |
58.6 |
42.1 |
39.5 |
21.3 |
43.7 |
53.2 |
18.3 |
7.91 |
Comparison experiments
Models |
Precision |
Recall |
mAP50 |
mAP |
GFLOPS |
Params (M) |
YOLOv5n |
73.8 |
62.2 |
68.1 |
41.5 |
4.2 |
1.77 |
YOLOv5n (DSConv=4) |
63 |
50.4 |
54.2 |
26.1 |
3.7 |
1.55 |
YOLOv5n (LDConv=4) |
76.5 |
63.6 |
70.8 |
46.5 |
3.7 |
1.55 |
YOLOv5n (DSConv=9) |
60.6 |
50.8 |
53.4 |
25.3 |
4.8 |
1.9 |
YOLOv5n (LDConv=9) |
76.7 |
65.2 |
71.8 |
48.4 |
4.8 |
1.9 |
Exploring experiments
Models |
AP50 |
AP75 |
AP |
APS |
APM |
APL |
GFLOPS |
Params (M) |
YOLOv8n |
49.0 |
37.1 |
34.2 |
16.9 |
37.1 |
49.1 |
8.7 |
3.15 |
YOLOv8n-5 (Sampled Shape 1) |
49.5 |
37.6 |
34.9 |
16.8 |
38.2 |
50.2 |
8.4 |
2.94 |
YOLOv8n-5 (Sampled Shape 2) |
49.6 |
37.8 |
34.9 |
15.9 |
38.4 |
50.1 |
8.4 |
2.94 |
YOLOv8n-5 (Sampled Shape 3) |
49.6 |
38.1 |
35 |
16.6 |
38.2 |
50.9 |
8.4 |
2.94 |
YOLOv8n-6 (Sampled Shape 1) |
50.1 |
38.3 |
35.3 |
16.6 |
38.6 |
51.1 |
8.6 |
3.01 |
YOLOv8n-6 (Sampled Shape 2) |
50.2 |
38.2 |
35.4 |
16.6 |
38.3 |
51.3 |
8.6 |
3.01 |
Models |
Initial Shape |
Precision |
Recall |
mAP50 |
mAP |
YOLOv5n |
a |
39.5 |
27.9 |
26.9 |
13.7 |
YOLOv5n |
b |
39.4 |
28.2 |
26.8 |
13.6 |
YOLOv5n |
c |
37.4 |
27.8 |
26.1 |
13.4 |
YOLOv5n |
d |
37.5 |
27 |
25.5 |
12.9 |
YOLOv5n |
e |
38.4 |
27.6 |
26.4 |
13.4 |
Citation
You may want to cite:
@inproceedings{dai2017deformable,
title={Deformable convolutional networks},
author={Dai, Jifeng and Qi, Haozhi and Xiong, Yuwen and Li, Yi and Zhang, Guodong and Hu, Han and Wei, Yichen},
booktitle={Proceedings of the IEEE international conference on computer vision},
pages={764--773},
year={2017}
}
@article{zhang2024ldconv,
title={LDConv: Linear deformable convolution for improving convolutional neural networks},
author={Zhang, Xin and Song, Yingze and Song, Tingting and Yang, Degang and Ye, Yichen and Zhou, Jie and Zhang, Liming},
journal={Image and Vision Computing},
pages={105190},
year={2024},
publisher={Elsevier}
}