CVI-SZU / ME-GraphAU

[IJCAI 2022] Learning Multi-dimensional Edge Feature-based AU Relation Graph for Facial Action Unit Recognition, Pytorch code
MIT License
157 stars 39 forks source link
facial-action-unit-detection facial-action-units graph-neural-network pytorch

PWC PWC

📢 News

Learning Multi-dimensional Edge Feature-based AU Relation Graph for Facial Action Unit Recognition

This is an official release of the paper

"Learning Multi-dimensional Edge Feature-based AU Relation Graph for Facial Action Unit Recognition", IJCAI-ECAI 2022

[Paper] [Project]

The main novelty of the proposed approach in comparison to pre-defined AU graphs and deep learned facial display-specific graphs are illustrated in this figure.

https://user-images.githubusercontent.com/35754447/169745317-40f76ec9-4bfd-4206-8f1e-4ab4a9bf464d.mp4

🔧 Requirements

Data and Data Prepareing Tools

The Datasets we used:

We provide tools for prepareing data in tool/. After Downloading raw data files, you can use these tools to process them, aligning with our protocals. More details have been described in tool/README.md.

Training with ImageNet pre-trained models

Make sure that you download the ImageNet pre-trained models to checkpoints/ (or you alter the checkpoint path setting in models/resnet.py or models/swin_transformer.py)

The download links of pre-trained models are in checkpoints/checkpoints.txt

Thanks to the offical Pytorch and Swin Transformer

Training and Testing

Pretrained models

BP4D arch_type GoogleDrive link Average F1-score
Ours (ResNet-18) - -
Ours (ResNet-50) link 64.7
Ours (ResNet-101) link 64.8
Ours (Swin-Tiny) link 65.6
Ours (Swin-Small) link 65.1
Ours (Swin-Base) link 65.5
DISFA arch_type GoogleDrive link Average F1-score
Ours (ResNet-18) - -
Ours (ResNet-50) link 63.1
Ours (ResNet-101) - -
Ours (Swin-Tiny) - -
Ours (Swin-Small) - -
Ours (Swin-Base) link 62.4

Download these files (e.g. ME-GraphAU_swin_base_BP4D.zip) and unzip them, each of which involves the checkpoints of three folds.

📝 Main Results

BP4D

Method AU1 AU2 AU4 AU6 AU7 AU10 AU12 AU14 AU15 AU17 AU23 AU24 Avg.
EAC-Net 39.0 35.2 48.6 76.1 72.9 81.9 86.2 58.8 37.5 59.1 35.9 35.8 55.9
JAA-Net 47.2 44.0 54.9 77.5 74.6 84.0 86.9 61.9 43.6 60.3 42.7 41.9 60.0
LP-Net 43.4 38.0 54.2 77.1 76.7 83.8 87.2 63.3 45.3 60.5 48.1 54.2 61.0
ARL 45.8 39.8 55.1 75.7 77.2 82.3 86.6 58.8 47.6 62.1 47.4 55.4 61.1
SEV-Net 58.2 50.4 58.3 81.9 73.9 87.8 87.5 61.6 52.6 62.2 44.6 47.6 63.9
FAUDT 51.7 49.3 61.0 77.8 79.5 82.9 86.3 67.6 51.9 63.0 43.7 56.3 64.2
SRERL 46.9 45.3 55.6 77.1 78.4 83.5 87.6 63.9 52.2 63.9 47.1 53.3 62.9
UGN-B 54.2 46.4 56.8 76.2 76.7 82.4 86.1 64.7 51.2 63.1 48.5 53.6 63.3
HMP-PS 53.1 46.1 56.0 76.5 76.9 82.1 86.4 64.8 51.5 63.0 49.9 54.5 63.4
Ours (ResNet-50) 53.7 46.9 59.0 78.5 80.0 84.4 87.8 67.3 52.5 63.2 50.6 52.4 64.7
Ours (Swin-B) 52.7 44.3 60.9 79.9 80.1 85.3 89.2 69.4 55.4 64.4 49.8 55.1 65.5

DISFA

Method AU1 AU2 AU4 AU6 AU9 AU12 AU25 AU26 Avg.
EAC-Net 41.5 26.4 66.4 50.7 80.5 89.3 88.9 15.6 48.5
JAA-Net 43.7 46.2 56.0 41.4 44.7 69.6 88.3 58.4 56.0
LP-Net 29.9 24.7 72.7 46.8 49.6 72.9 93.8 65.0 56.9
ARL 43.9 42.1 63.6 41.8 40.0 76.2 95.2 66.8 58.7
SEV-Net 55.3 53.1 61.5 53.6 38.2 71.6 95.7 41.5 58.8
FAUDT 46.1 48.6 72.8 56.7 50.0 72.1 90.8 55.4 61.5
SRERL 45.7 47.8 59.6 47.1 45.6 73.5 84.3 43.6 55.9
UGN-B 43.3 48.1 63.4 49.5 48.2 72.9 90.8 59.0 60.0
HMP-PS 38.0 45.9 65.2 50.9 50.8 76.0 93.3 67.6 61.0
Ours (ResNet-50) 54.6 47.1 72.9 54.0 55.7 76.7 91.1 53.0 63.1
Ours (Swin-B) 52.5 45.7 76.1 51.8 46.5 76.1 92.9 57.6 62.4

🎓 Citation

if the code or method help you in the research, please cite the following paper:


@inproceedings{luo2022learning,
  title     = {Learning Multi-dimensional Edge Feature-based AU Relation Graph for Facial Action Unit Recognition},
  author    = {Luo, Cheng and Song, Siyang and Xie, Weicheng and Shen, Linlin and Gunes, Hatice},
  booktitle = {Proceedings of the Thirty-First International Joint Conference on
               Artificial Intelligence, {IJCAI-22}},
  pages     = {1239--1246},
  year      = {2022}
}

@article{song2022gratis,
    title={Gratis: Deep learning graph representation with task-specific topology and multi-dimensional edge features},
    author={Song, Siyang and Song, Yuxin and Luo, Cheng and Song, Zhiyuan and Kuzucu, Selim and Jia, Xi and Guo, Zhijiang and Xie, Weicheng and Shen, Linlin and Gunes, Hatice},
    journal={arXiv preprint arXiv:2211.12482},
    year={2022}
}