CVI-SZU / QA-CLIMS

[ACM MM 2023] QA-CLIMS: Question-Answer Cross Language Image Matching for Weakly Supervised Semantic Segmentation
MIT License
12 stars 0 forks source link
semantic-segmentation weakly-supervised-learning weakly-supervised-segmentation

[MM'23] QA-CLIMS

This is the official PyTorch implementation of our paper:

QA-CLIMS: Question-Answer Cross Language Image Matching for Weakly Supervised Semantic Segmentation
Songhe Deng, [Wei Zhuo](), Jinheng Xie, Linlin Shen
Computer Vision Institute, Shenzhen University
ACM International Conference on Multimedia, 2023
[Paper] [arXiv]

Environment

pip install -r requirements.txt

PASCAL VOC2012

You can find the following files at here.

File filename
FG & BG VQA results voc_vqa_fg_blip.npy
voc_vqa_bg_blip.npy
FG & BG VQA text features voc_vqa_fg_blip_ViT-L-14_cache.npy
voc_vqa_bg_blip_ViT-L-14_cache.npy
pre-trained baseline model res50_cam.pth
QA-CLIMS model res50_qa_clims.pth

1. Prepare VQA result features

You can download the VQA text features voc_vqa_fg_blip_ViT-L-14_cache.npy and voc_vqa_bg_blip_ViT-L-14_cache.npy above and put its in vqa/.

Or, you can generate it by yourself: To generate VQA results, please follow [third_party/README](third_party/README.md#BLIP). After that, run following command to generate VQA text features: ```shell python gen_text_feats_cache.py voc \ --vqa_fg_file vqa/voc_vqa_fg_blip.npy \ --vqa_fg_cache_file vqa/voc_vqa_fg_blip_ViT-L-14_cache.npy \ --vqa_bg_file vqa/voc_vqa_bg_blip.npy \ --vqa_bg_cache_file vqa/voc_vqa_bg_blip_ViT-L-14_cache.npy \ --clip ViT-L/14 ```

2. Train QA-CLIMS and generate initial CAMs

Please download the pre-trained baseline model res50_cam.pth above and put it at cam-baseline-voc12/res50_cam.pth.

bash run_voc12_qa_clims.sh

3. Train IRNet and generate pseudo semantic masks

bash run_voc12_sem_seg.sh

4.Train DeepLab using pseudo semantic masks.

Please follow deeplab-pytorch or CLIMS.

MS COCO2014

You can find the following files at here.

File filename
FG & BG VQA results coco_vqa_fg_blip.npy
coco_vqa_bg_blip.npy
FG & BG VQA text features coco_vqa_fg_blip_ViT-L-14_cache.npy
coco_vqa_bg_blip_ViT-L-14_cache.npy
pre-trained baseline model res50_cam.pth
QA-CLIMS model res50_qa_clims.pth

Please place the downloaded coco_vqa_fg_blip_ViT-L-14_cache.npy and coco_vqa_bg_blip_ViT-L-14_cache.npy in vqa/, and res50_cam.pth in cam-baseline-coco14/.

Then, running the following command:

bash run_coco14_qa_clims.sh
bash run_coco14_sem_seg.sh

Citation

If you find this code useful for your research, please consider cite our paper:

@inproceedings{deng2023qa-clims,
  title={QA-CLIMS: Question-Answer Cross Language Image Matching for Weakly Supervised Semantic Segmentation},
  author={Deng, Songhe and Zhuo, Wei and Xie, Jinheng and Shen, Linlin},
  booktitle={Proceedings of the 31st ACM International Conference on Multimedia},
  pages={5572--5583},
  year={2023}
}

This repository was highly based on CLIMS and IRNet, thanks for their great works!