CoDet: Co-Occurrence Guided Region-Word Alignment for Open-Vocabulary Object Detection,
Chuofan Ma, Yi Jiang, Xin Wen, Zehuan Yuan, Xiaojuan Qi
NeurIPS 2023 (https://arxiv.org/abs/2310.16667)
Project page (https://codet-ovd.github.io)
Setup environment
conda create --name codet python=3.8 -y && conda activate codet
pip install torch==1.12.1+cu116 torchvision==0.13.1+cu116 --extra-index-url https://download.pytorch.org/whl/cu116
git clone https://github.com/CVMI-Lab/CoDet.git
Install Apex and xFormer (You can skip this part if you do not use EVA-02 backbone)
pip install ninja
pip install -v -U git+https://github.com/facebookresearch/xformers.git@7e05e2caaaf8060c1c6baadc2b04db02d5458a94
git clone https://github.com/NVIDIA/apex && cd apex
pip install -v --disable-pip-version-check --no-cache-dir --no-build-isolation --global-option="--cpp_ext" --global-option="--cuda_ext" ./ && cd ..
Install detectron2 and other dependencies
cd CoDet/third_party/detectron2
pip install -e .
cd ../..
pip install -r requirements.txt
We use LVIS and Conceptual Caption (CC3M) for OV-LVIS experimets,
COCO for OV-COCO experiments,
and Objects365 for cross-dataset evaluation.
Before starting processing, please download the (selected) datasets from the official websites and place or sim-link them under CoDet/datasets/
.
CoDet/datasets/metadata/
is the preprocessed meta-data (included in the repo).
Please refer to DATA.md for more details.
$CoDet/datasets/
metadata/
lvis/
coco/
cc3m/
objects365/
Backbone | Box AP50 | Box AP50_novel | Config | Model |
---|---|---|---|---|
ResNet50 | 46.8 | 30.6 | CoDet_OVCOCO_R50_1x.yaml | ckpt |
Backbone | Mask mAP | Mask mAP_novel | Config | Model |
---|---|---|---|---|
ResNet50 | 31.3 | 23.7 | CoDet_OVLVIS_R5021k_4x_ft4x.yaml | ckpt |
Swin-B | 39.2 | 29.4 | CoDet_OVLVIS_SwinB_4x_ft4x.yaml | ckpt |
EVA02-L | 44.7 | 37.0 | CoDet_OVLVIS_EVA_4x.yaml | ckpt |
To test with custom images/videos, run
python demo.py --config-file [config_file] --input [your_image_file] --output [output_file_path] --vocabulary lvis --opts MODEL.WEIGHTS [model_weights]
Or you can customize the test vocabulary, e.g.,
python demo.py --config-file [config_file] --input [your_image_file] --output [output_file_path] --vocabulary custom --custom_vocabulary headphone,webcam,paper,coffe --confidence-threshold 0.3 --opts MODEL.WEIGHTS [model_weights]
To evaluate a pre-trained model, run
python train_net.py --num-gpus $GPU_NUM --config-file /path/to/config --eval-only MODEL.WEIGHTS /path/to/ckpt
To evaluate a pre-trained model on Objects365 (cross-dataset evaluation), run
python train_net.py --num-gpus $GPU_NUM --config-file /path/to/config --eval-only MODEL.WEIGHTS /path/to/ckpt DATASETS.TEST "('objects365_v2_val',)" MODEL.RESET_CLS_TESTS True MODEL.TEST_CLASSIFIERS "('datasets/metadata/o365_clip_a+cnamefix.npy',)" MODEL.TEST_NUM_CLASSES "(365,)" MODEL.MASK_ON False
Training configurations used by the paper are listed in CoDet/configs
.
Most config files require pre-trained model weights for initialization (indicated by MODEL.WEIGHTS in the config file).
Please train or download the corresponding pre-trained models and place them under CoDet/models/
before training.
Name | Model |
---|---|
resnet50_miil_21k.pkl | ResNet50-21K pretrain from MIIL |
swin_base_patch4_window7_224_22k.pkl | SwinB-21K pretrain from Swin-Transformer |
eva02_L_pt_m38m_p14to16.pt | EVA02-L mixed 38M pretrain from EVA |
BoxSup_OVCOCO_CLIP_R50_1x.pth | ResNet50 COCO base class pretrain from Detic |
BoxSup-C2_Lbase_CLIP_R5021k_640b64_4x.pth | ResNet50 LVIS base class pretrain from Detic |
BoxSup-C2_Lbase_CLIP_SwinB_896b32_4x.pth | SwinB LVIS base class pretrain from Detic |
To train on a single node, run
python train_net.py --num-gpus $GPU_NUM --config-file /path/to/config
Note: By default, we use 8 V100 for training with ResNet50 or SwinB, and 16 A100 for training with EVA02-L. Please remember to re-scale the learning rate accordingly if you are using a different number of GPUs for training.
If you find this repo useful for your research, please consider citing our paper:
@inproceedings{ma2023codet,
title={CoDet: Co-Occurrence Guided Region-Word Alignment for Open-Vocabulary Object Detection},
author={Ma, Chuofan and Jiang, Yi and Wen, Xin and Yuan, Zehuan and Qi, Xiaojuan},
booktitle={Advances in Neural Information Processing Systems},
year={2023}
}
CoDet is built upon the awesome works Detic and EVA.
This project is licensed under the Apache License 2.0 - see the LICENSE file for details.