CausalInference / pygformula

The pygformula implements the parametric g-formula in Python. The parametric g-formula (Robins, 1986) uses longitudinal data with time-varying treatments and confounders to estimate the risk or mean of an outcome under hypothetical treatment strategies specified by the user.
MIT License
21 stars 2 forks source link
causal-inference g-formula parametric-models

pygformula: a python implementation of the parametric g-formula

PyPI version Documentation Status Downloads

Authors: Jing Li, Sophia Rein, Sean McGrath, Roger Logan, Ryan O’Dea, Miguel Hernán

Overview

The pygformula package implements the non-iterative conditional expectation (NICE) estimator of the g-formula algorithm (Robins, 1986). The g-formula can estimate an outcome’s counterfactual mean or risk under hypothetical treatment strategies (interventions) when there is sufficient information on time-varying treatments and confounders.

Features

Requirements

The package requires python 3.8+ and these necessary dependencies:

Documentation

The online documentation is available at pygformula documentation.

Issues

If you have any issues, please open an issue on github, we will regularly check the questions. For any additional questions or comments, please email jing_li@hsph.harvard.edu.