DSFNet: Dynamic and Static Fusion Network for Moving Object Detection in Satellite Videos, Chao Xiao, Qian Yin, and Xingyi Ying.
We propose a two-stream network named DSFNet to combine the static context information and the dynamic motion cues to detect small moving object in satellite videos. Experiments on videos collected from Jilin-1 satellite and the results have demonstrated the effectiveness and robustness of the proposed DSFNet. For more detailed information, please refer to the paper.
In this code, we also apply SORT to get the tracking results of DSFNet.
If you find the code useful, please consider citing our paper using the following BibTeX entry.
@article{xiao2021dsfnet,
title={DSFNet: Dynamic and Static Fusion Network for Moving Object Detection in Satellite Videos},
author={Xiao, Chao and Yin, Qian and Ying, Xinyi and Li, Ruojing and Wu, Shuanglin and Li, Miao and Liu, Li and An, Wei and Chen, Zhijie},
journal={IEEE Geoscience and Remote Sensing Letters},
volume={19},
pages={1--5},
year={2021},
publisher={IEEE}
}
python train.py --model_name DSFNet --gpus 0,1 --lr 1.25e-4 --lr_step 30,45 --num_epochs 55 --batch_size 4 --val_intervals 5 --test_large_size True --datasetname rsdata --data_dir ./data/RsCarData/
python test.py --model_name DSFNet --gpus 0 --load_model ./checkpoints/DSFNet.pth --test_large_size True --datasetname rsdata --data_dir ./data/RsCarData/
python test.py --model_name DSFNet --gpus 0 --load_model ./checkpoints/DSFNet.pth --test_large_size True --show_results True --datasetname rsdata --data_dir ./data/RsCarData/
python testTrackingSort.py --model_name DSFNet --gpus 0 --load_model ./checkpoints/DSFNet.pth --test_large_size True --save_track_results True --datasetname rsdata --data_dir ./data/RsCarData/
Quantitative results of different models evaluated by AP@50. The model weights are available at [BaiduYun](Sharing code: bidt). You can down load the model weights and put it to the checkpoints folder.
Models | AP@50 |
---|---|
DSFNet with Static | 54.3 |
DSFNet with Dynamic | 60.5 |
DSFNet | 70.5 |
*This code is highly borrowed from CenterNet. Thanks to Xingyi zhou.
*The overall repository style is highly borrowed from DNANet. Thanks to Boyang Li.
*The dataset is part of VISO. Thanks to Qian Yin.
The eval code has been updated and can be found in './lib/utils/utils_eval.py'. The evaluation results can be generated by running testSaveMat.py first and then evaluation.py.