ChelsieLei / EZ-HOI

[NeurIPS 2024] Official code for paper "EZ-HOI: VLM Adaptation via Guided Prompt Learning for Zero-Shot HOI Detection"
8 stars 1 forks source link

[NeurIPS 2024] EZ-HOI: VLM Adaptation via Guided Prompt Learning for Zero-Shot HOI Detection

Paper Links

arXiv Project Page

Dataset

Follow the process of UPT.

The downloaded files should be placed as follows. Otherwise, please replace the default path to your custom locations.

|- EZ-HOI
|   |- hicodet
|   |   |- hico_20160224_det
|   |       |- annotations
|   |       |- images
|   |- vcoco
|   |   |- mscoco2014
|   |       |- train2014
|   |       |-val2014
:   :      

Dependencies

  1. Follow the environment setup in UPT.

  2. Follow the environment setup in ADA-CM.

  3. run the python file to obtain the pre-extracted CLIP image features

    python CLIP_hicodet_extract.py

    Remember to make sure the correct path for annotation files and datasets.

|- EZ-HOI
|   |- hicodet_pkl_files
|   |   |- clip336_img_hicodet_test
|   |   |- clip336_img_hicodet_train
|   |   |- clipbase_img_hicodet_test
|   |   |- clipbase_img_hicodet_train
|   |- vcoco_pkl_files
|   |   |- clip336_img_vcoco_train
|   |   |- clip336_img_vcoco_val
:   :      

HICO-DET

Train on HICO-DET:

bash scripts/hico_train_vitB_zs.sh

Test on HICO-DET:

bash scripts/hico_test_vitB_zs.sh

Model Zoo

Dataset Setting Backbone mAP Unseen Seen
HICO-DET UV ResNet-50+ViT-B 32.32 25.10 33.49
HICO-DET UV ResNet-50+ViT-L 36.84 28.82 38.15
HICO-DET RF ResNet-50+ViT-B 33.13 29.02 34.15
HICO-DET RF ResNet-50+ViT-L 36.73 34.24 37.35
HICO-DET NF ResNet-50+ViT-B 31.17 33.66 30.55
HICO-DET NF ResNet-50+ViT-L 34.84 36.33 34.47
HICO-DET UO ResNet-50+ViT-B 32.27 33.28 32.06
HICO-DET UO ResNet-50+ViT-L 36.38 38.17 36.02
Dataset Setting Backbone mAP Rare Non-rare
HICO-DET default ResNet-50+ViT-L 38.61 37.70 38.89

Citation

If you find our paper and/or code helpful, please consider citing :

@inproceedings{
lei2024efficient,
title={EZ-HOI: VLM Adaptation via Guided Prompt Learning for Zero-Shot HOI Detection},
author={Lei, Qinqian and Wang, Bo and Robby T., Tan},
booktitle={The Thirty-eighth Annual Conference on Neural Information Processing Systems},
year={2024}
}

Acknowledgement

We gratefully thank the authors from UPT and ADA-CM for open-sourcing their code.