This is the official repository of UNITER (ECCV 2020). This repository currently supports finetuning UNITER on NLVR2, VQA, VCR, SNLI-VE, Image-Text Retrieval for COCO and Flickr30k, and Referring Expression Comprehensions (RefCOCO, RefCOCO+, and RefCOCO-g). Both UNITER-base and UNITER-large pre-trained checkpoints are released. UNITER-base pre-training with in-domain data is also available.
Some code in this repo are copied/modified from opensource implementations made available by PyTorch, HuggingFace, OpenNMT, and Nvidia. The image features are extracted using BUTD.
We provide Docker image for easier reproduction. Please install the following:
Our scripts require the user to have the docker group membership so that docker commands can be run without sudo. We only support Linux with NVIDIA GPUs. We test on Ubuntu 18.04 and V100 cards. We use mixed-precision training hence GPUs with Tensor Cores are recommended.
NOTE: Please run bash scripts/download_pretrained.sh $PATH_TO_STORAGE
to get our latest pretrained
checkpoints. This will download both the base and large models.
We use NLVR2 as an end-to-end example for using this code base.
Download processed data and pretrained models with the following command.
bash scripts/download_nlvr2.sh $PATH_TO_STORAGE
After downloading you should see the following folder structure:
├── ann
│ ├── dev.json
│ └── test1.json
├── finetune
│ ├── nlvr-base
│ └── nlvr-base.tar
├── img_db
│ ├── nlvr2_dev
│ ├── nlvr2_dev.tar
│ ├── nlvr2_test
│ ├── nlvr2_test.tar
│ ├── nlvr2_train
│ └── nlvr2_train.tar
├── pretrained
│ └── uniter-base.pt
└── txt_db
├── nlvr2_dev.db
├── nlvr2_dev.db.tar
├── nlvr2_test1.db
├── nlvr2_test1.db.tar
├── nlvr2_train.db
└── nlvr2_train.db.tar
Launch the Docker container for running the experiments.
# docker image should be automatically pulled
source launch_container.sh $PATH_TO_STORAGE/txt_db $PATH_TO_STORAGE/img_db \
$PATH_TO_STORAGE/finetune $PATH_TO_STORAGE/pretrained
The launch script respects $CUDA_VISIBLE_DEVICES environment variable.
Note that the source code is mounted into the container under /src
instead
of built into the image so that user modification will be reflected without
re-building the image. (Data folders are mounted into the container separately
for flexibility on folder structures.)
Run finetuning for the NLVR2 task.
# inside the container
python train_nlvr2.py --config config/train-nlvr2-base-1gpu.json
# for more customization
horovodrun -np $N_GPU python train_nlvr2.py --config $YOUR_CONFIG_JSON
Run inference for the NLVR2 task and then evaluate.
# inference
python inf_nlvr2.py --txt_db /txt/nlvr2_test1.db/ --img_db /img/nlvr2_test/ \
--train_dir /storage/nlvr-base/ --ckpt 6500 --output_dir . --fp16
# evaluation
# run this command outside docker (tested with python 3.6)
# or copy the annotation json into mounted folder
python scripts/eval_nlvr2.py ./results.csv $PATH_TO_STORAGE/ann/test1.json
The above command runs inference on the model we trained. Feel free to replace
--train_dir
and --ckpt
with your own model trained in step 3.
Currently we only support single GPU inference.
Customization
# training options
python train_nlvr2.py --help
argparse
default value.--gradient_accumulation_steps
emulates multi-gpu trainingMisc.
# text annotation preprocessing
bash scripts/create_txtdb.sh $PATH_TO_STORAGE/txt_db $PATH_TO_STORAGE/ann
# image feature extraction (Tested on Titan-Xp; may not run on latest GPUs)
bash scripts/extract_imgfeat.sh $PATH_TO_IMG_FOLDER $PATH_TO_IMG_NPY
# image preprocessing
bash scripts/create_imgdb.sh $PATH_TO_IMG_NPY $PATH_TO_STORAGE/img_db
In case you would like to reproduce the whole preprocessing pipeline.
NOTE: train and inference should be ran inside the docker container
bash scripts/download_vqa.sh $PATH_TO_STORAGE
horovodrun -np 4 python train_vqa.py --config config/train-vqa-base-4gpu.json \
--output_dir $VQA_EXP
python inf_vqa.py --txt_db /txt/vqa_test.db --img_db /img/coco_test2015 \
--output_dir $VQA_EXP --checkpoint 6000 --pin_mem --fp16
The result file will be written at $VQA_EXP/results_test/results_6000_all.json
, which can be
submitted to the evaluation server
NOTE: train and inference should be ran inside the docker container
bash scripts/download_vcr.sh $PATH_TO_STORAGE
horovodrun -np 4 python train_vcr.py --config config/train-vcr-base-4gpu.json \
--output_dir $VCR_EXP
horovodrun -np 4 python inf_vcr.py --txt_db /txt/vcr_test.db \
--img_db "/img/vcr_gt_test/;/img/vcr_test/" \
--split test --output_dir $VCR_EXP --checkpoint 8000 \
--pin_mem --fp16
The result file will be written at $VCR_EXP/results_test/results_8000_all.csv
, which can be
submitted to VCR leaderboard for evluation.
NOTE: pretrain should be ran inside the docker container
bash scripts/download_vcr.sh $PATH_TO_STORAGE
horovodrun -np 4 python pretrain_vcr.py --config config/pretrain-vcr-base-4gpu.json \
--output_dir $PRETRAIN_VCR_EXP
NOTE: train should be ran inside the docker container
bash scripts/download_ve.sh $PATH_TO_STORAGE
horovodrun -np 2 python train_ve.py --config config/train-ve-base-2gpu.json \
--output_dir $VE_EXP
download data
bash scripts/download_itm.sh $PATH_TO_STORAGE
NOTE: Image-Text Retrieval is computationally heavy, especially on COCO.
# every image-text pair has to be ranked; please use as many GPUs as possible
horovodrun -np $NGPU python inf_itm.py \
--txt_db /txt/itm_flickr30k_test.db --img_db /img/flickr30k \
--checkpoint /pretrain/uniter-base.pt --model_config /src/config/uniter-base.json \
--output_dir $ZS_ITM_RESULT --fp16 --pin_mem
horovodrun -np 8 python train_itm.py --config config/train-itm-flickr-base-8gpu.json
horovodrun -np 16 python train_itm_hard_negatives.py \
--config config/train-itm-flickr-base-16gpu-hn.jgon
horovodrun -np 16 python train_itm_hard_negatives.py \
--config config/train-itm-coco-base-16gpu-hn.json
bash scripts/download_re.sh $PATH_TO_STORAGE
python train_re.py --config config/train-refcoco-base-1gpu.json \
--output_dir $RE_EXP
source scripts/eval_refcoco.sh $RE_EXP
The result files will be written under $RE_EXP/results_test/
Similarly, change corresponding configs/scripts for running RefCOCO+/RefCOCOg.
download
bash scripts/download_indomain.sh $PATH_TO_STORAGE
pre-train
horovodrun -np 8 python pretrain.py --config config/pretrain-indomain-base-8gpu.json \
--output_dir $PRETRAIN_EXP
Unfortunately, we cannot host CC/SBU features due to their large size. Users will need to process them on their own. We will provide a smaller sample for easier reference to the expected format soon.
If you find this code useful for your research, please consider citing:
@inproceedings{chen2020uniter,
title={Uniter: Universal image-text representation learning},
author={Chen, Yen-Chun and Li, Linjie and Yu, Licheng and Kholy, Ahmed El and Ahmed, Faisal and Gan, Zhe and Cheng, Yu and Liu, Jingjing},
booktitle={ECCV},
year={2020}
}
MIT