This repository contains the code used for the paper:
This code was originally forked from the awd-lstm-lm and MoS-awd-lstm-lm.
Except the method in our paper, we also implement a recent proposed regularization called PartialShuffle. We find that combining this techique with our method can further improve the performance for langauge models.
The model comes with instructions to train: word level language models over the Penn Treebank (PTB), WikiText-2 (WT2), and WikiText-103 (WT103) datasets. (The code and pre-trained model for WikiText-103 will be merged into the branch soon.)
If you use this code or our results in your research, you can choose to cite:
@InProceedings{pmlr-v97-wang19f,
title = {Improving Neural Language Modeling via Adversarial Training},
author = {Wang, Dilin and Gong, Chengyue and Liu, Qiang},
booktitle = {Proceedings of the 36th International Conference on Machine Learning},
pages = {6555--6565},
year = {2019},
editor = {Chaudhuri, Kamalika and Salakhutdinov, Ruslan},
volume = {97},
series = {Proceedings of Machine Learning Research},
address = {Long Beach, California, USA},
month = {09--15 Jun},
publisher = {PMLR},
}
Although the repo is implemented in pytorch 0.4
, we have found that the post process can only work well with pytorch 0.2
. Therefore, we add a patch for dynamic evaluation and it should be run under pytorch 0.2
.
We are now trying to fix this problem. If you have any idea, feel free to talk with us.
Open the folder mos-awd-lstm-lm
and you can use the MoS-awd-lstm-lm, which can achieve good performance but also cost a lot of time.
We first list the results without dynamic evaluation:
Method | Valid PPL | Test PPL |
---|---|---|
MoS | 56.54 | 54.44 |
MoS + PartialShuffle | 55.89 | 53.92 |
MoS + Adv | 55.08 | 52.97 |
MoS + Adv + PartialShuffle | 54.10 | 52.20 |
If you want to use Adv
only, run the following command:
python3 -u main.py --data data/penn --dropouti 0.4 --dropoutl 0.29 --dropouth 0.225 --seed 28 --batch_size 12 --lr 20.0 --epoch 1000 --nhid 960 --nhidlast 620 --emsize 280 --n_experts 15 --save PTB --single_gpu --switch 200
python3 -u finetune.py --data data/penn --dropouti 0.4 --dropoutl 0.29 --dropouth 0.225 --seed 28 --batch_size 12 --lr 25.0 --epoch 1000 --nhid 960 --emsize 280 --n_experts 15 --save PATH_TO_FOLDER --single_gpu -gaussian 0 --epsilon 0.028
cp PATH_TO_FOLDER/finetune_model.pt PATH_TO_FOLDER/model.pt
and run python3 -u finetune.py --data data/penn --dropouti 0.4 --dropoutl 0.29 --dropouth 0.225 --seed 28 --batch_size 12 --lr 25.0 --epoch 1000 --nhid 960 --emsize 280 --n_experts 15 --save PATH_TO_FOLDER --single_gpu -gaussian 0 --epsilon 0.028
(tiwce)cp PATH_TO_FOLDER/finetune_model.pt PATH_TO_FOLDER/model.pt
and run python3 -u finetune.py --data data/penn --dropouti 0.4 --dropoutl 0.5 --dropouth 0.225 --seed 28 --batch_size 12 --lr 25.0 --epoch 1000 --nhid 960 --emsize 280 --n_experts 15 --save PATH_TO_FOLDER --single_gpu -gaussian 0 --epsilon 0.028
source search_dy_hyper.sh
to search the hyper-parameter for dynamic evaluation (lambda, epsilon, learning rate) on validation set, and then apply it on test set.To use PartialShuffle, add a command --partial
, we try to use PartialShuffle only in the last finetune and get 54.92
/ 52.78
(validation / testing). You can download the pretrained-model along with the log file or train it from scratch.
If you want to use Adv
only, Run the following command:
python3 -u main.py --epochs 1000 --data data/wikitext-2 --save WT2 --dropouth 0.2 --seed 1882 --n_experts 15 --nhid 1150 --nhidlast 650 --emsize 300 --batch_size 15 --lr 15.0 --dropoutl 0.29 --small_batch_size 5 --max_seq_len_delta 20 --dropouti 0.55 --single_gpu --switch 200
python3 -u finetune.py --epochs 1000 --data data/wikitext-2 --save PATH_TO_FOLDER --dropouth 0.2 --seed 1882 --n_experts 15 --nhid 1150 --emsize 300 --batch_size 15 --lr 20.0 --dropoutl 0.29 --small_batch_size 5 --max_seq_len_delta 20 --dropouti 0.55 --single_gpu -gaussian 0 --epsilon 0.028
cp PATH_TO_FOLDER/finetune_model.pt PATH_TO_FOLDER/model.pt
and run python3 -u finetune.py --epochs 1000 --data data/wikitext-2 --save PATH_TO_FOLDER --dropouth 0.2 --seed 1882 --n_experts 15 --nhid 1150 --emsize 300 --batch_size 15 --lr 20.0 --dropoutl 0.29 --small_batch_size 5 --max_seq_len_delta 20 --dropouti 0.55 --single_gpu -gaussian 0 --epsilon 0.028
(twice)cp PATH_TO_FOLDER/finetune_model.pt PATH_TO_FOLDER/model.pt
and run python3 -u finetune.py --epochs 1000 --data data/wikitext-2 --save PATH_TO_FOLDER --dropouth 0.2 --seed 1882 --n_experts 15 --nhid 1150 --emsize 300 --batch_size 15 --lr 20.0 --dropoutl 0.5 --small_batch_size 5 --max_seq_len_delta 20 --dropouti 0.55 --single_gpu -gaussian 0 --epsilon 0.028
source search_dy_hyper.sh
to search the hyper-parameter for dynamic evaluation (lambda, epsilon, learning rate) on validation set, and then apply it on test set.To use PartialShuffle, add a command --partial
.
Open the folder awd-lstm-lm
and you can use the awd-lstm-lm, which can achieve good performance and cost less time.
Run the following command:
nohup python3 -u main.py --nonmono 5 --batch_size 20 --data data/penn --dropouti 0.3 --dropouth 0.25 --dropout 0.40 --alpha 2 --beta 1 --seed 141 --epoch 4000 --save ptb.pt --switch 200 >> ptb.log 2>&1 &
source search_dy_hyper.sh
to search the hyper-parameter for dynamic evaluation (lambda, epsilon, learning rate) on validation set, and then apply it on test set.You can download the [pretrained-model]() along with the log file or train it from scratch.
Run the following command:
nohup python3 -u main.py --epochs 4000 --nonmono 5 --emsize 400 --batch_size 80 --dropouti 0.5 --data data/wikitext-2 --dropouth 0.2 --seed 1882 --save wt2.pt --gaussian 0.175 --switch 200 >> wt2.log 2>&1 &
source search_dy_hyper.sh
to search the hyper-parameter for dynamic evaluation (lambda, epsilon, learning rate) on validation set, and then apply it on test set.You can download the pretrained-model along with the log file or train it from scratch.