Colmar-zlicheng / Color-NeuS

[3DV 2024] Color-NeuS: Reconstructing Neural Implicit Surfaces with Color
https://colmar-zlicheng.github.io/color_neus
Apache License 2.0
139 stars 10 forks source link
implicit-surfaces in-hand-object-scanning reconstruction

Color-NeuS: Reconstructing Neural Implicit Surfaces with Color

Licheng Zhong · Lixin Yang · Kailin Li · Haoyu Zhen · Mei Han · Cewu Lu

3DV 2024

Project Page | arXiv | Data

Logo

https://github.com/Colmar-zlicheng/Color-NeuS/assets/111580763/5b9a3ed9-7d4f-48d9-84b5-a60a0a6adef9

:rocket: Dependencies

git clone https://github.com/Colmar-zlicheng/Color-NeuS.git
cd Color-NeuS
conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia
pip install -r requirements.txt
pip install "git+https://github.com/facebookresearch/pytorch3d.git"

:steam_locomotive: Train

Dataset

General command

python train.py -g 0 --cfg config/Color_NeuS_${DATASET}.yml -obj ${OBJECT_NAME} --exp_id ${EXP_ID}

Command line arguments

For example

# IHO Video: ghost_bear
python train.py -g 0 --cfg config/Color_NeuS_iho.yml -obj ghost_bear --exp_id Color_NeuS_iho_ghost_bear
# DTU: dtu_scan83
python train.py -g 0 --cfg config/Color_NeuS_dtu.yml -obj 83 --exp_id Color_NeuS_dtu_83
# BlendedMVS: bmvs_bear
python train.py -g 0 --cfg config/Color_NeuS_bmvs.yml -obj bear --exp_id Color_NeuS_bmvs_bear
# OmniObject3D: doll_002
python train.py -g 0 --cfg config/Color_NeuS_omniobject3d.yml -obj doll_002 --exp_id Color_NeuS_omniobject3d_doll_002

Checkpoint

All the training checkpoints are saved at exp/${EXP_ID}_{timestamp}/checkpoints/

Other Method

We also provide our implementation of NeuS in this repo. To train NeuS, you can replace Color_NeuS_${DATASET}.yml with NeuS_${DATASET}.yml in the above command line, such as:

# IHO Video: ghost_bear
python train.py -g 0 --cfg config/NeuS_iho.yml -obj ghost_bear --exp_id NeuS_iho_ghost_bear

:monocle_face: Inference

The code provided herein are available for usage as specified in the LICENSE file. By downloading and using the code you agree to the terms in the LICENSE.

:earth_asia: Citation

@inproceedings{zhong2024colorneus,
    title     = {Color-NeuS: Reconstructing Neural Implicit Surfaces with Color},
    author    = {Zhong, Licheng and Yang, Lixin and Li, Kailin and Zhen, Haoyu and Han, Mei and Lu, Cewu},
    booktitle = {International Conference on 3D Vision (3DV)},
    year      = {2024}
}

For more questions, please contact Licheng Zhong: zlicheng@sjtu.edu.cn