Segmentation Nets designed for use with SpaceNet datasets and other remote sensing data
An example of the output of this tool can be found at https://cwnets-demo.netlify.com/
Using conda
Create Virtual Environment
conda create -n cw-nets python-3.6 pip cython
Install geospatial requirements
conda install --name cw-nets \
rtree \
gdal
Install Deep Learning Frameworks:
conda install pytorch torchvision cuda91 -c pytorch
conda install opencv scikit-image
Install CosmiQ tools
pip install git+https://github.com/CosmiQ/cw-tiler.git@dataset_creation
pip install git+https://github.com/CosmiQ/cw-nets.git@pytorch_generator
python create_mask.py --raster_path s3://spacenet-dataset/AOI_2_Vegas/srcData/rasterData/AOI_2_Vegas_MUL-PanSharpen_Cloud.tif \ --output_name AOI_2_Vegas_v11.tif \ --data_output $OUTPUT_PATH \ --model_path weights/deepglobe_buildings.pt \ --cell_size 200 \ --stride_size 190 \ --tile_size 650
See LICENSE.txt <LICENSE.txt>
__.
See AUTHORS.txt <AUTHORS.txt>
__.
See CHANGES.txt <CHANGES.txt>
__.