Frequency Enhanced Decomposed Transformer (FEDformer) is more efficient than standard Transformer with a linear complexity to the sequence length. Our empirical studies with six benchmark datasets show that compared with state-of-the-art methods, FEDformer can reduce prediction error by 14.8% and 22.6% for multivariate and univariate time series, respectively.
This source code is also simultaneously updated in the Repo.
Figure 1. Overall structure of FEDformer |
Figure 2. Frequency Enhanced Block (FEB) | Figure 3. Frequency Enhanced Attention (FEA) |
./scripts
. You can reproduce the experiment results by:bash ./scripts/run_M.sh
bash ./scripts/run_S.sh
If you find this repo useful, please cite our paper.
@inproceedings{zhou2022fedformer,
title={{FEDformer}: Frequency enhanced decomposed transformer for long-term series forecasting},
author={Zhou, Tian and Ma, Ziqing and Wen, Qingsong and Wang, Xue and Sun, Liang and Jin, Rong},
booktitle={Proc. 39th International Conference on Machine Learning (ICML 2022)},
location = {Baltimore, Maryland},
pages={},
year={2022}
}
If you have any question or want to use the code, please contact tian.zt@alibaba-inc.com or maziqing.mzq@alibaba-inc.com .
We appreciate the following github repos a lot for their valuable code base or datasets:
https://github.com/thuml/Autoformer
https://github.com/zhouhaoyi/Informer2020