Documentation | Paper | Samples
[AAAI 2021] DeepRobust is a PyTorch adversarial library for attack and defense methods on images and graphs.
List of including algorithms can be found in [Image Package] and [Graph Package].
Usage
For more details about attacks and defenses, you can read the following papers.
If our work could help your research, please cite: DeepRobust: A PyTorch Library for Adversarial Attacks and Defenses
@article{li2020deeprobust,
title={Deeprobust: A pytorch library for adversarial attacks and defenses},
author={Li, Yaxin and Jin, Wei and Xu, Han and Tang, Jiliang},
journal={arXiv preprint arXiv:2005.06149},
year={2020}
}
git clone https://github.com/DSE-MSU/DeepRobust.git; cd DeepRobust; python setup_empty.py install
to directly install DeepRobust without installing dependency packages.pip install deeprobust==0.2.9
. We have fixed the OOM issue of metattack on new pytorch versions.pip install deeprobust==0.2.8
! We have added a scalable attack PRBCD, NeurIPS'21 to graph package. We can now use PRBCD to attack large-scale graphs such as ogb-arxiv (see example in test_prbcd.py)! python examples/graph/test_airgnn.py
! See details in test_airgnn.pypip install deeprobust==0.2.6
! We have more updates coming. Please stay tuned!pip install deeprobust==0.2.4
!pip install deeprobust==0.2.2
!pip install deeprobust
!python >= 3.6
(python 3.5 should also work)pytorch >= 1.2.0
see setup.py
or requirements.txt
for more information.
pip install deeprobust
git clone https://github.com/DSE-MSU/DeepRobust.git
cd DeepRobust
python setup.py install
If you find the dependencies are hard to install, please try the following:
python setup_empty.py install
(only install deeprobust without installing other packages)
python examples/image/test_PGD.py
python examples/image/test_pgdtraining.py
python examples/graph/test_gcn_jaccard.py --dataset cora
python examples/graph/test_mettack.py --dataset cora --ptb_rate 0.05
Train model
Example: Train a simple CNN model on MNIST dataset for 20 epoch on gpu.
import deeprobust.image.netmodels.train_model as trainmodel
trainmodel.train('CNN', 'MNIST', 'cuda', 20)
Model would be saved in deeprobust/trained_models/.
Instantiated attack methods and defense methods.
Example: Generate adversary example with PGD attack.
from deeprobust.image.attack.pgd import PGD
from deeprobust.image.config import attack_params
from deeprobust.image.utils import download_model
import torch
import deeprobust.image.netmodels.resnet as resnet
from torchvision import transforms,datasets
URL = "https://github.com/I-am-Bot/deeprobust_model/raw/master/CIFAR10_ResNet18_epoch_20.pt"
download_model(URL, "$MODEL_PATH$")
model = resnet.ResNet18().to('cuda')
model.load_state_dict(torch.load("$MODEL_PATH$"))
model.eval()
transform_val = transforms.Compose([transforms.ToTensor()])
test_loader = torch.utils.data.DataLoader(
datasets.CIFAR10('deeprobust/image/data', train = False, download=True,
transform = transform_val),
batch_size = 10, shuffle=True)
x, y = next(iter(test_loader))
x = x.to('cuda').float()
adversary = PGD(model, 'cuda')
Adv_img = adversary.generate(x, y, **attack_params['PGD_CIFAR10'])
Example: Train defense model.
from deeprobust.image.defense.pgdtraining import PGDtraining
from deeprobust.image.config import defense_params
from deeprobust.image.netmodels.CNN import Net
import torch
from torchvision import datasets, transforms
model = Net()
train_loader = torch.utils.data.DataLoader(
datasets.MNIST('deeprobust/image/defense/data', train=True, download=True,
transform=transforms.Compose([transforms.ToTensor()])),
batch_size=100,shuffle=True)
test_loader = torch.utils.data.DataLoader(
datasets.MNIST('deeprobust/image/defense/data', train=False,
transform=transforms.Compose([transforms.ToTensor()])),
batch_size=1000,shuffle=True)
defense = PGDtraining(model, 'cuda')
defense.generate(train_loader, test_loader, **defense_params["PGDtraining_MNIST"])
More example code can be found in deeprobust/examples.
Use our evulation program to test attack algorithm against defense.
Example:
cd DeepRobust
python examples/image/test_train.py
python deeprobust/image/evaluation_attack.py
Load dataset
import torch
import numpy as np
from deeprobust.graph.data import Dataset
from deeprobust.graph.defense import GCN
from deeprobust.graph.global_attack import Metattack
data = Dataset(root='/tmp/', name='cora', setting='nettack')
adj, features, labels = data.adj, data.features, data.labels
idx_train, idx_val, idx_test = data.idx_train, data.idx_val, data.idx_test
idx_unlabeled = np.union1d(idx_val, idx_test)
Set up surrogate model
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
surrogate = GCN(nfeat=features.shape[1], nclass=labels.max().item()+1, nhid=16,
with_relu=False, device=device)
surrogate = surrogate.to(device)
surrogate.fit(features, adj, labels, idx_train)
Set up attack model and generate perturbations
model = Metattack(model=surrogate, nnodes=adj.shape[0], feature_shape=features.shape, device=device)
model = model.to(device)
perturbations = int(0.05 * (adj.sum() // 2))
model.attack(features, adj, labels, idx_train, idx_unlabeled, perturbations, ll_constraint=False)
modified_adj = model.modified_adj
For more details please refer to mettack.py or run
python examples/graph/test_mettack.py --dataset cora --ptb_rate 0.05
Load dataset
import torch
from deeprobust.graph.data import Dataset, PtbDataset
from deeprobust.graph.defense import GCN, GCNJaccard
import numpy as np
np.random.seed(15)
# load clean graph
data = Dataset(root='/tmp/', name='cora', setting='nettack')
adj, features, labels = data.adj, data.features, data.labels
idx_train, idx_val, idx_test = data.idx_train, data.idx_val, data.idx_test
# load pre-attacked graph by mettack
perturbed_data = PtbDataset(root='/tmp/', name='cora')
perturbed_adj = perturbed_data.adj
Test
# Set up defense model and test performance
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = GCNJaccard(nfeat=features.shape[1], nclass=labels.max()+1, nhid=16, device=device)
model = model.to(device)
model.fit(features, perturbed_adj, labels, idx_train)
model.eval()
output = model.test(idx_test)
# Test on GCN
model = GCN(nfeat=features.shape[1], nclass=labels.max()+1, nhid=16, device=device)
model = model.to(device)
model.fit(features, perturbed_adj, labels, idx_train)
model.eval()
output = model.test(idx_test)
For more details please refer to test_gcn_jaccard.py or run
python examples/graph/test_gcn_jaccard.py --dataset cora
adversary examples generated by fgsm:
Left:original, classified as 6; Right:adversary, classified as 4.
Serveral trained models can be found here: https://drive.google.com/open?id=1uGLiuCyd8zCAQ8tPz9DDUQH6zm-C4tEL
Some of the algorithms are referred to paper authors' implementations. References can be found at the top of each file.
Implementation of network structure are referred to weiaicunzai's github. Original code can be found here: pytorch-cifar100
Thanks to their outstanding works!