DaikiTanaka-UT / JointOptimization

Joint Optimization Framework for Learning with Noisy Labels
45 stars 9 forks source link

Joint Optimization Framework for Learning with Noisy Labels

This repository contains the code for the paper Joint Optimization Framework for Learning with Noisy Labels.

Requirements

Training

To train the network on the Symmmetric Noise CIFAR-10 dataset (noise rate = 0.7):

$ python first_step_train.py --gpu 0 --out first_sn07 --learnrate 0.08 --alpha 1.2 --beta 0.8 --percent 0.7
$ python second_step_train.py --gpu 0 --out second_sn07 --label first_sn07

To train the network on the Asymmmetric Noise CIFAR-10 dataset (noise rate = 0.4):

$ python first_step_train.py --gpu 0 --out first_an04 --learnrate 0.03 --alpha 0.8 --beta 0.4 --percent 0.4 --asym
$ python second_step_train.py --gpu 0 --out second_an04 --label first_an04

Citation

@inproceedings{tanaka2018joint,
    title = {Joint Optimization Framework for Learning with Noisy Labels},
    author = {Tanaka, Daiki and Ikami, Daiki and Yamasaki, Toshihiko and Aizawa, Kiyoharu},
    booktitle = {CVPR},
    year = {2018}
}