DataCanvasIO / HyperTS

A Full-Pipeline Automated Time Series (AutoTS) Analysis Toolkit.
https://hyperts.readthedocs.io
Apache License 2.0
264 stars 28 forks source link

按照指示,无法配置好环境 #109

Closed 13012473536 closed 1 year ago

13012473536 commented 1 year ago

作者您好,我分别使用了requirements.txt和您在其它issues贴出的环境包列表,但仍无法正常跑通深度学习模式。例如当前的情况,我的环境列表为follow您在其它issues贴出的列表,仅在安装报错时做调整。报错为:

Preparing metadata (setup.py) ... error error: subprocess-exited-with-error

× python setup.py egg_info did not run successfully. │ exit code: 1 ╰─> [6 lines of output] Traceback (most recent call last): File "", line 2, in File "", line 34, in File "/tmp/pip-install-ajj6jolh/numba_3c53dd7cfefa4a56983a902eed128b55/setup.py", line 15, in import numpy as np ModuleNotFoundError: No module named 'numpy' [end of output]

note: This error originates from a subprocess, and is likely not a problem with pip. error: metadata-generation-failed

× Encountered error while generating package metadata. ╰─> See above for output.

note: This is an issue with the package mentioned above, not pip. hint: See above for details.

我的环境包列表为: argon2-cffi==21.3.0 argon2-cffi-bindings==21.2.0 asttokens==2.2.1 attrs==21.2.0 ax-platform==0.2.2 backcall==0.2.0 bcrypt==4.0.1 beautifulsoup4==4.11.1 bleach==5.0.1 botorch==0.5.1 certifi==2022.12.7 cffi==1.15.1 charset-normalizer==3.0.1 click==8.1.3 cloudpickle==2.2.1 contourpy==1.0.7 convertdate cryptography==39.0.0 cycler==0.11.0 Cython==0.29.17 dask==2023.1.1 decorator==5.1.1 defusedxml==0.7.1 Deprecated==1.2.13 distributed==2023.1.1 ephem==4.1.4 executing==1.2.0 fastjsonschema==2.16.1 featuretools filterpy==1.4.5 fonttools==4.38.0 fsspec==2023.1.0 HeapDict==1.0.1 hijri-converter==2.2.4 holidays==0.18 htmlmin==0.1.12 hypernets hyperts==0.2.0 idna==3.4 ImageHash==4.2.1 importlib-metadata importlib-resources==5.10.2 ipython==8.9.0 ipython-genutils==0.2.0 ipywidgets==7.7.1 jedi==0.18.2 Jinja2==3.1.2 joblib jsonschema==4.9.0 jupyterlab-pygments==0.2.2 jupyterlab-widgets==1.1.1 kiwisolver==1.4.4 korean-lunar-calendar==0.3.1 lightgbm==3.3.5 llvmlite==0.39.1 locket==1.0.0 LunarCalendar==0.0.9 MarkupSafe==2.1.2 matplotlib==3.5.3 matplotlib-inline==0.1.6 missingno==0.5.1 mistune==0.8.4 msgpack==1.0.4 multimethod==1.8 nbclient==0.6.6 nbconvert==6.5.0 nbformat==5.4.0 numba numpy==1.17.3 packaging==23.0 pandas==1.3.5 pandas-profiling==3.2.0 pandocfilters==1.5.0 paramiko==3.0.0 parso==0.8.3 partd==1.3.0 patsy pexpect==4.8.0 phik pickleshare==0.7.5 Pillow==9.4.0 pip==22.3.1 pkgutil_resolve_name==1.3.10 prettytable==3.6.0 prometheus-client==0.14.1 prompt-toolkit==3.0.36 prophet==1.1.2 psutil==5.9.4 ptyprocess==0.7.0 pure-eval==0.2.2 pyarrow==11.0.0 pycparser==2.21 pydantic==1.9.1 Pygments==2.14.0 pymannkendall==1.4.2 PyMeeus==0.5.12 PyNaCl==1.5.0 pyparsing==3.0.9 pyrsistent==0.18.1 python-dateutil==2.8.2 pytz==2022.7.1 PyWavelets==1.3.0 PyYAML==6.0 requests==2.28.2 scikit-learn==1.2.1 scipy==1.7.3 seaborn==0.11.2 Send2Trash==1.8.0 setuptools==66.1.1 six==1.16.0 sktime sortedcontainers==2.4.0 soupsieve==2.3.2.post1 stack-data==0.6.2 statsmodels==0.13.5 tangled-up-in-unicode==0.2.0 tblib==1.7.0 terminado==0.15.0 threadpoolctl==3.1.0 tinycss2==1.1.1 toolz==0.12.0 tornado==6.2 tqdm==4.64.1 traitlets==5.8.1 urllib3==1.26.14 visions==0.7.4 wcwidth==0.2.6 webencodings==0.5.1 wheel==0.38.4 widgetsnbextension==3.6.1 woodwork wrapt==1.14.1 XlsxWriter==3.0.7 zict==2.2.0 zipp==3.12.0 cmdstanpy

在1080ti,2080ti,v100,三种型号上安装均是环境无法匹配。 谢谢作者的阅览!麻烦给些指导

13012473536 commented 1 year ago

已解决。用高版本tf2.9就能兼容这些环境包。 i fix it with tf2.9, cuda11. Then these pip packages will not be conflicted.