DingfanChen / Private-Set

Official implementation of "Private Set Generation with Discriminative Information" (NeurIPS 2022)
MIT License
17 stars 0 forks source link

Private-Set

LICENSE Python PyTorch

image This repository contains the implementation for "Private Set Generation with Discriminative Information (NeurIPS 2022)".

Contact: Dingfan Chen (dingfan.chen@cispa.de)

Requirements

Running Experiments

Classification (without prior)

python main.py \
--dataset "Dataset name" \
--exp_name "Experiment name" (name of the output directory) \
--spc "Number of samples per-class" \
--enable_privacy \
--target_epsilon "The target privacy level (default=10)"

Classification (with DCGAN network as image prior)

python main_prior.py \
--dataset "Dataset name" \
--exp_name "Experiment name" (name of the output directory) \
--spc "Number of samples per-class" \
--enable_privacy \
--target_epsilon "The target privacy level (default=10)"

Continual (Class-incremental) learning

cd continual_learning 

Citation

@inproceedings{chen2022privateset,
  title={Private Set Generation with Discriminative Information},
  author={Chen, Dingfan and Kerkouche, Raouf and Fritz, Mario},
  booktitle={Neural Information Processing Systems (NeurIPS)},
  year={2022}
}

Acknowledgements

Our implementation uses the source code from the following repositories: