This repository contains the implementation for "Private Set Generation with Discriminative Information (NeurIPS 2022)".
Contact: Dingfan Chen (dingfan.chen@cispa.de)
python main.py \
--dataset "Dataset name" \
--exp_name "Experiment name" (name of the output directory) \
--spc "Number of samples per-class" \
--enable_privacy \
--target_epsilon "The target privacy level (default=10)"
main.py
or run python main.py --help
for a detailed descriptions of all supported arguments.noise_multiplier
given the desired target_epsilon
. 'MNIST'
,'FashionMNIST'
, 'CIFAR10'
has been tested.spc
in [1, 10, 20, 50] has been tested.python main_prior.py \
--dataset "Dataset name" \
--exp_name "Experiment name" (name of the output directory) \
--spc "Number of samples per-class" \
--enable_privacy \
--target_epsilon "The target privacy level (default=10)"
main_prior.py
or run python main_prior.py --help
for a detailed descriptions of all supported arguments.noise_multiplier
given the desired target_epsilon
. 'MNIST'
,'FashionMNIST'
has been tested.spc
in [1, 10, 20] has been tested.cd continual_learning
'MNIST'
,'FashionMNIST'
are supported.python main_ours.py \
--dataset "Dataset name" \
--exp_name "Experiment name" (name of the output directory) \
--enable_privacy \
--target_epsilon "The target privacy level (default=10)"
python main_dpsgd.py \
--dataset "Dataset name" \
--exp_name "Experiment name" (name of the output directory) \
--enable_privacy \
--target_epsilon "The target privacy level (default=10)"
python main_dpmerf.py \
--dataset "Dataset name" \
--exp_name "Experiment name" (name of the output directory) \
--enable_privacy \
--target_epsilon "The target privacy level (default=10)"
@inproceedings{chen2022privateset,
title={Private Set Generation with Discriminative Information},
author={Chen, Dingfan and Kerkouche, Raouf and Fritz, Mario},
booktitle={Neural Information Processing Systems (NeurIPS)},
year={2022}
}
Our implementation uses the source code from the following repositories: