python train.py --data_dir data/Haze_1k/thick -train_batch_size 2 --model_save_dir train_result
python test.py --model_save_dir results
Quantitative comparisons over SateHaze1k for different methods:
If you use any part of this code, please kindly cite
@article{Dong2022,
title={TransRA: transformer and residual attention fusion for single remote sensing image dehazing},
author={Dong, Pengwei, Wang, Bo},
journal={Multidimensional Systems and Signal Processing},
url={https://doi.org/10.1007/s11045-022-00835-x},
year={2022}
}