Model compression CLI tool for keras.
$ git clone ${this repository}
$ cd ./keras_compressor
$ pip install .
Simple example:
$ keras-compressor.py model.h5 compressed.h5
With accuracy parameter error
:
$ keras-compressor.py --error 0.001 model.h5 compressed.h5
$ keras-compressor.py --help [impl_keras_compressor:keras_compressor]
Using TensorFlow backend.
usage: keras-compressor.py [-h] [--error 0.1]
[--log-level {CRITICAL,ERROR,WARNING,INFO,DEBUG}]
model.h5 compressed.h5
compress keras model
positional arguments:
model.h5 target model, whose loss is specified by
`model.compile()`.
compressed.h5 compressed model path
optional arguments:
-h, --help show this help message and exit
--error 0.1 layer-wise acceptable error. If this value is larger,
compressed model will be less accurate and achieve
better compression rate. Default: 0.1
--log-level {CRITICAL,ERROR,WARNING,INFO,DEBUG}
log level. Default: INFO
In example directory, you will find model compression of VGG-like models using MNIST and CIFAR10 dataset.
$ cd ./keras_compressor/example/mnist/
$ python train.py
-> outputs non-compressed model `model_raw.h5`
$ python compress.py
-> outputs compressed model `model_compressed.h5` from `model_raw.h5`
$ python finetune.py
-> outputs finetuned and compressed model `model_finetuned.h5` from `model_compressed.h5`
$ python evaluate.py model_raw.h5
$ python evaluate.py model_compressed.h5
$ python evaluate.py model_finetuned.h5
-> output test accuracy and the number of model parameters