Emrys365 / espnet

End-to-End Speech Processing Toolkit
https://espnet.github.io/espnet/
Apache License 2.0
7 stars 2 forks source link

ESPnet: end-to-end speech processing toolkit

system/pytorch ver. 1.12.1 1.13.1 2.0.1 2.1.0
ubuntu/python3.10/pip ci on ubuntu ci on ubuntu
ubuntu/python3.9/pip ci on ubuntu ci on ubuntu
ubuntu/python3.8/pip ci on ubuntu ci on ubuntu
ubuntu/python3.7/pip ci on ubuntu ci on ubuntu
debian11/python3.10/conda ci on debian11
centos7/python3.10/conda ci on centos7
windows/python3.10/pip ci on windows
macos/python3.10/pip ci on macos
macos/python3.10/conda ci on macos
______________________________________________________________________ [![PyPI version](https://badge.fury.io/py/espnet.svg)](https://badge.fury.io/py/espnet) [![Python Versions](https://img.shields.io/pypi/pyversions/espnet.svg)](https://pypi.org/project/espnet/) [![Downloads](https://pepy.tech/badge/espnet)](https://pepy.tech/project/espnet) [![GitHub license](https://img.shields.io/github/license/espnet/espnet.svg)](https://github.com/espnet/espnet) [![codecov](https://codecov.io/gh/espnet/espnet/branch/master/graph/badge.svg)](https://codecov.io/gh/espnet/espnet) [![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black) [![Imports: isort](https://img.shields.io/badge/%20imports-isort-%231674b1?style=flat&labelColor=ef8336)](https://pycqa.github.io/isort/) [![pre-commit.ci status](https://results.pre-commit.ci/badge/github/espnet/espnet/master.svg)](https://results.pre-commit.ci/latest/github/espnet/espnet/master) [![Mergify Status](https://img.shields.io/endpoint.svg?url=https://api.mergify.com/v1/badges/espnet/espnet&style=flat)](https://mergify.com) [![Discord](https://img.shields.io/discord/1174538500360650773?color=%239B59B6&label=chat%20on%20discord)](https://discord.gg/hrCs85gFWM) ______________________________________________________________________ [**Docs**](https://espnet.github.io/espnet/) | [**Example**](https://github.com/espnet/espnet/tree/master/egs) | [**Example (ESPnet2)**](https://github.com/espnet/espnet/tree/master/egs2) | [**Docker**](https://github.com/espnet/espnet/tree/master/docker) | [**Notebook**](https://github.com/espnet/notebook)

ESPnet is an end-to-end speech processing toolkit covering end-to-end speech recognition, text-to-speech, speech translation, speech enhancement, speaker diarization, spoken language understanding, and so on. ESPnet uses pytorch as a deep learning engine and also follows Kaldi style data processing, feature extraction/format, and recipes to provide a complete setup for various speech processing experiments.

Tutorial Series

Key Features

Kaldi-style complete recipe

ASR: Automatic Speech Recognition

Demonstration

TTS: Text-to-speech

Demonstration

To train the neural vocoder, please check the following repositories:

SE: Speech enhancement (and separation)

Demonstration

ST: Speech Translation & MT: Machine Translation

VC: Voice conversion

SLU: Spoken Language Understanding

SUM: Speech Summarization

SVS: Singing Voice Synthesis

SSL: Self-supervised Learning

UASR: Unsupervised ASR (EURO: ESPnet Unsupervised Recognition - Open-source)

S2T: Speech-to-text with Whisper-style multilingual multitask models

DNN Framework

ESPnet2

See ESPnet2.

Installation

Docker Container

go to docker/ and follow instructions.

Contribution

Thank you for taking the time for ESPnet! Any contributions to ESPnet are welcome, and feel free to ask any questions or requests to issues. If it's your first ESPnet contribution, please follow the contribution guide.

ASR results

expand
We list the character error rate (CER) and word error rate (WER) of major ASR tasks. | Task | CER (%) | WER (%) | Pre-trained model | | ----------------------------------------------------------------- | :-------------: | :-------------: | :-------------------------------------------------------------------------------------------------------------------------------------------------------------------------: | | Aishell dev/test | 4.6/5.1 | N/A | [link](https://github.com/espnet/espnet/blob/master/egs/aishell/asr1/RESULTS.md#conformer-kernel-size--15--specaugment--lm-weight--00-result) | | **ESPnet2** Aishell dev/test | 4.1/4.4 | N/A | [link](https://github.com/espnet/espnet/tree/master/egs2/aishell/asr1#branchformer-initial) | | Common Voice dev/test | 1.7/1.8 | 2.2/2.3 | [link](https://github.com/espnet/espnet/blob/master/egs/commonvoice/asr1/RESULTS.md#first-results-default-pytorch-transformer-setting-with-bpe-100-epochs-single-gpu) | | CSJ eval1/eval2/eval3 | 5.7/3.8/4.2 | N/A | [link](https://github.com/espnet/espnet/blob/master/egs/csj/asr1/RESULTS.md#pytorch-backend-transformer-without-any-hyperparameter-tuning) | | **ESPnet2** CSJ eval1/eval2/eval3 | 4.5/3.3/3.6 | N/A | [link](https://github.com/espnet/espnet/tree/master/egs2/csj/asr1#initial-conformer-results) | | **ESPnet2** GigaSpeech dev/test | N/A | 10.6/10.5 | [link](https://github.com/espnet/espnet/tree/master/egs2/gigaspeech/asr1#e-branchformer) | | HKUST dev | 23.5 | N/A | [link](https://github.com/espnet/espnet/blob/master/egs/hkust/asr1/RESULTS.md#transformer-only-20-epochs) | | **ESPnet2** HKUST dev | 21.2 | N/A | [link](https://github.com/espnet/espnet/tree/master/egs2/hkust/asr1#transformer-asr--transformer-lm) | | Librispeech dev_clean/dev_other/test_clean/test_other | N/A | 1.9/4.9/2.1/4.9 | [link](https://github.com/espnet/espnet/blob/master/egs/librispeech/asr1/RESULTS.md#pytorch-large-conformer-with-specaug--speed-perturbation-8-gpus--transformer-lm-4-gpus) | | **ESPnet2** Librispeech dev_clean/dev_other/test_clean/test_other | 0.6/1.5/0.6/1.4 | 1.7/3.4/1.8/3.6 | [link](https://github.com/espnet/espnet/tree/master/egs2/librispeech/asr1#self-supervised-learning-features-hubert_large_ll60k-conformer-utt_mvn-with-transformer-lm) | | Switchboard (eval2000) callhm/swbd | N/A | 14.0/6.8 | [link](https://github.com/espnet/espnet/blob/master/egs/swbd/asr1/RESULTS.md#conformer-with-bpe-2000-specaug-speed-perturbation-transformer-lm-decoding) | | **ESPnet2** Switchboard (eval2000) callhm/swbd | N/A | 13.4/7.3 | [link](https://github.com/espnet/espnet/tree/master/egs2/swbd/asr1#e-branchformer) | | TEDLIUM2 dev/test | N/A | 8.6/7.2 | [link](https://github.com/espnet/espnet/blob/master/egs/tedlium2/asr1/RESULTS.md#conformer-large-model--specaug--speed-perturbation--rnnlm) | | **ESPnet2** TEDLIUM2 dev/test | N/A | 7.3/7.1 | [link](https://github.com/espnet/espnet/blob/master/egs2/tedlium2/asr1/README.md#e-branchformer-12-encoder-layers) | | TEDLIUM3 dev/test | N/A | 9.6/7.6 | [link](https://github.com/espnet/espnet/blob/master/egs/tedlium3/asr1/RESULTS.md) | | WSJ dev93/eval92 | 3.2/2.1 | 7.0/4.7 | N/A | | **ESPnet2** WSJ dev93/eval92 | 1.1/0.8 | 2.8/1.8 | [link](https://github.com/espnet/espnet/tree/master/egs2/wsj/asr1#self-supervised-learning-features-wav2vec2_large_ll60k-conformer-utt_mvn-with-transformer-lm) | Note that the performance of the CSJ, HKUST, and Librispeech tasks was significantly improved by using the wide network (#units = 1024) and large subword units if necessary reported by [RWTH](https://arxiv.org/pdf/1805.03294.pdf). If you want to check the results of the other recipes, please check `egs//asr1/RESULTS.md`.

ASR demo

expand
You can recognize speech in a WAV file using pre-trained models. Go to a recipe directory and run `utils/recog_wav.sh` as follows: ```sh # go to the recipe directory and source path of espnet tools cd egs/tedlium2/asr1 && . ./path.sh # let's recognize speech! recog_wav.sh --models tedlium2.transformer.v1 example.wav ``` where `example.wav` is a WAV file to be recognized. The sampling rate must be consistent with that of data used in training. Available pre-trained models in the demo script are listed below. | Model | Notes | | :----------------------------------------------------------------------------------------------- | :--------------------------------------------------------- | | [tedlium2.rnn.v1](https://drive.google.com/open?id=1UqIY6WJMZ4sxNxSugUqp3mrGb3j6h7xe) | Streaming decoding based on CTC-based VAD | | [tedlium2.rnn.v2](https://drive.google.com/open?id=1cac5Uc09lJrCYfWkLQsF8eapQcxZnYdf) | Streaming decoding based on CTC-based VAD (batch decoding) | | [tedlium2.transformer.v1](https://drive.google.com/open?id=1cVeSOYY1twOfL9Gns7Z3ZDnkrJqNwPow) | Joint-CTC attention Transformer trained on Tedlium 2 | | [tedlium3.transformer.v1](https://drive.google.com/open?id=1zcPglHAKILwVgfACoMWWERiyIquzSYuU) | Joint-CTC attention Transformer trained on Tedlium 3 | | [librispeech.transformer.v1](https://drive.google.com/open?id=1BtQvAnsFvVi-dp_qsaFP7n4A_5cwnlR6) | Joint-CTC attention Transformer trained on Librispeech | | [commonvoice.transformer.v1](https://drive.google.com/open?id=1tWccl6aYU67kbtkm8jv5H6xayqg1rzjh) | Joint-CTC attention Transformer trained on CommonVoice | | [csj.transformer.v1](https://drive.google.com/open?id=120nUQcSsKeY5dpyMWw_kI33ooMRGT2uF) | Joint-CTC attention Transformer trained on CSJ | | [csj.rnn.v1](https://drive.google.com/open?id=1ALvD4nHan9VDJlYJwNurVr7H7OV0j2X9) | Joint-CTC attention VGGBLSTM trained on CSJ |

SE results

expand
We list results from three different models on WSJ0-2mix, which is one the most widely used benchmark dataset for speech separation. | Model | STOI | SAR | SDR | SIR | | ------------------------------------------------- | ---- | ----- | ----- | ----- | | [TF Masking](https://zenodo.org/record/4498554) | 0.89 | 11.40 | 10.24 | 18.04 | | [Conv-Tasnet](https://zenodo.org/record/4498562) | 0.95 | 16.62 | 15.94 | 25.90 | | [DPRNN-Tasnet](https://zenodo.org/record/4688000) | 0.96 | 18.82 | 18.29 | 28.92 |

SE demos

expand
You can try the interactive demo with Google Colab. Please click the following button to get access to the demos. [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1fjRJCh96SoYLZPRxsjF9VDv4Q2VoIckI?usp=sharing) It is based on ESPnet2. Pre-trained models are available for both speech enhancement and speech separation tasks. Speech separation streaming demos: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/17vd1V78eJpp3PHBnbFE5aVY5uMxQFL6o?usp=sharing)

ST results

expand
We list 4-gram BLEU of major ST tasks. #### end-to-end system | Task | BLEU | Pre-trained model | | ------------------------------------------------- | :---: | :-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: | | Fisher-CallHome Spanish fisher_test (Es->En) | 51.03 | [link](https://github.com/espnet/espnet/blob/master/egs/fisher_callhome_spanish/st1/RESULTS.md#train_spen_lcrm_pytorch_train_pytorch_transformer_bpe_short_long_bpe1000_specaug_asrtrans_mttrans) | | Fisher-CallHome Spanish callhome_evltest (Es->En) | 20.44 | [link](https://github.com/espnet/espnet/blob/master/egs/fisher_callhome_spanish/st1/RESULTS.md#train_spen_lcrm_pytorch_train_pytorch_transformer_bpe_short_long_bpe1000_specaug_asrtrans_mttrans) | | Libri-trans test (En->Fr) | 16.70 | [link](https://github.com/espnet/espnet/blob/master/egs/libri_trans/st1/RESULTS.md#train_spfr_lc_pytorch_train_pytorch_transformer_bpe_short_long_bpe1000_specaug_asrtrans_mttrans-1) | | How2 dev5 (En->Pt) | 45.68 | [link](https://github.com/espnet/espnet/blob/master/egs/how2/st1/RESULTS.md#trainpt_tc_pytorch_train_pytorch_transformer_short_long_bpe8000_specaug_asrtrans_mttrans-1) | | Must-C tst-COMMON (En->De) | 22.91 | [link](https://github.com/espnet/espnet/blob/master/egs/must_c/st1/RESULTS.md#train_spen-dede_tc_pytorch_train_pytorch_transformer_short_long_bpe8000_specaug_asrtrans_mttrans) | | Mboshi-French dev (Fr->Mboshi) | 6.18 | N/A | #### cascaded system | Task | BLEU | Pre-trained model | | ------------------------------------------------- | :---: | :--------------: | | Fisher-CallHome Spanish fisher_test (Es->En) | 42.16 | N/A | | Fisher-CallHome Spanish callhome_evltest (Es->En) | 19.82 | N/A | | Libri-trans test (En->Fr) | 16.96 | N/A | | How2 dev5 (En->Pt) | 44.90 | N/A | | Must-C tst-COMMON (En->De) | 23.65 | N/A | If you want to check the results of the other recipes, please check `egs//st1/RESULTS.md`.

ST demo

expand
(**New!**) We made a new real-time E2E-ST + TTS demonstration in Google Colab. Please access the notebook from the following button and enjoy the real-time speech-to-speech translation! [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/espnet/notebook/blob/master/st_demo.ipynb) --- You can translate speech in a WAV file using pre-trained models. Go to a recipe directory and run `utils/translate_wav.sh` as follows: ```sh # Go to recipe directory and source path of espnet tools cd egs/fisher_callhome_spanish/st1 && . ./path.sh # download example wav file wget -O - https://github.com/espnet/espnet/files/4100928/test.wav.tar.gz | tar zxvf - # let's translate speech! translate_wav.sh --models fisher_callhome_spanish.transformer.v1.es-en test.wav ``` where `test.wav` is a WAV file to be translated. The sampling rate must be consistent with that of data used in training. Available pre-trained models in the demo script are listed as below. | Model | Notes | | :----------------------------------------------------------------------------------------------------------- | :------------------------------------------------------- | | [fisher_callhome_spanish.transformer.v1](https://drive.google.com/open?id=1hawp5ZLw4_SIHIT3edglxbKIIkPVe8n3) | Transformer-ST trained on Fisher-CallHome Spanish Es->En |

MT results

expand
| Task | BLEU | Pre-trained model | | ------------------------------------------------- | :---: | :-------------------------------------------------------------------------------------------------------------------------------------------------------------: | | Fisher-CallHome Spanish fisher_test (Es->En) | 61.45 | [link](https://github.com/espnet/espnet/blob/master/egs/fisher_callhome_spanish/mt1/RESULTS.md#trainen_lcrm_lcrm_pytorch_train_pytorch_transformer_bpe_bpe1000) | | Fisher-CallHome Spanish callhome_evltest (Es->En) | 29.86 | [link](https://github.com/espnet/espnet/blob/master/egs/fisher_callhome_spanish/mt1/RESULTS.md#trainen_lcrm_lcrm_pytorch_train_pytorch_transformer_bpe_bpe1000) | | Libri-trans test (En->Fr) | 18.09 | [link](https://github.com/espnet/espnet/blob/master/egs/libri_trans/mt1/RESULTS.md#trainfr_lcrm_tc_pytorch_train_pytorch_transformer_bpe1000) | | How2 dev5 (En->Pt) | 58.61 | [link](https://github.com/espnet/espnet/blob/master/egs/how2/mt1/RESULTS.md#trainpt_tc_tc_pytorch_train_pytorch_transformer_bpe8000) | | Must-C tst-COMMON (En->De) | 27.63 | [link](https://github.com/espnet/espnet/blob/master/egs/must_c/mt1/RESULTS.md#summary-4-gram-bleu) | | IWSLT'14 test2014 (En->De) | 24.70 | [link](https://github.com/espnet/espnet/blob/master/egs/iwslt16/mt1/RESULTS.md#result) | | IWSLT'14 test2014 (De->En) | 29.22 | [link](https://github.com/espnet/espnet/blob/master/egs/iwslt16/mt1/RESULTS.md#result) | | IWSLT'14 test2014 (De->En) | 32.2 | [link](https://github.com/espnet/espnet/blob/master/egs2/iwslt14/mt1/README.md) | | IWSLT'16 test2014 (En->De) | 24.05 | [link](https://github.com/espnet/espnet/blob/master/egs/iwslt16/mt1/RESULTS.md#result) | | IWSLT'16 test2014 (De->En) | 29.13 | [link](https://github.com/espnet/espnet/blob/master/egs/iwslt16/mt1/RESULTS.md#result) |

TTS results

ESPnet2
You can listen to the generated samples in the following URL. - [ESPnet2 TTS generated samples](https://drive.google.com/drive/folders/1H3fnlBbWMEkQUfrHqosKN_ZX_WjO29ma?usp=sharing) > Note that in the generation, we use Griffin-Lim (`wav/`) and [Parallel WaveGAN](https://github.com/kan-bayashi/ParallelWaveGAN) (`wav_pwg/`). You can download pre-trained models via `espnet_model_zoo`. - [ESPnet model zoo](https://github.com/espnet/espnet_model_zoo) - [Pre-trained model list](https://github.com/espnet/espnet_model_zoo/blob/master/espnet_model_zoo/table.csv) You can download pre-trained vocoders via `kan-bayashi/ParallelWaveGAN`. - [kan-bayashi/ParallelWaveGAN](https://github.com/kan-bayashi/ParallelWaveGAN) - [Pre-trained vocoder list](https://github.com/kan-bayashi/ParallelWaveGAN#results)
ESPnet1
> NOTE: We are moving on ESPnet2-based development for TTS. Please check the latest results in the above ESPnet2 results. You can listen to our samples in demo HP [espnet-tts-sample](https://espnet.github.io/espnet-tts-sample/). Here we list some notable ones: - [Single English speaker Tacotron2](https://drive.google.com/open?id=18JgsOCWiP_JkhONasTplnHS7yaF_konr) - [Single Japanese speaker Tacotron2](https://drive.google.com/open?id=1fEgS4-K4dtgVxwI4Pr7uOA1h4PE-zN7f) - [Single other language speaker Tacotron2](https://drive.google.com/open?id=1q_66kyxVZGU99g8Xb5a0Q8yZ1YVm2tN0) - [Multi English speaker Tacotron2](https://drive.google.com/open?id=18S_B8Ogogij34rIfJOeNF8D--uG7amz2) - [Single English speaker Transformer](https://drive.google.com/open?id=14EboYVsMVcAq__dFP1p6lyoZtdobIL1X) - [Single English speaker FastSpeech](https://drive.google.com/open?id=1PSxs1VauIndwi8d5hJmZlppGRVu2zuy5) - [Multi English speaker Transformer](https://drive.google.com/open?id=1_vrdqjM43DdN1Qz7HJkvMQ6lCMmWLeGp) - [Single Italian speaker FastSpeech](https://drive.google.com/open?id=13I5V2w7deYFX4DlVk1-0JfaXmUR2rNOv) - [Single Mandarin speaker Transformer](https://drive.google.com/open?id=1mEnZfBKqA4eT6Bn0eRZuP6lNzL-IL3VD) - [Single Mandarin speaker FastSpeech](https://drive.google.com/open?id=1Ol_048Tuy6BgvYm1RpjhOX4HfhUeBqdK) - [Multi Japanese speaker Transformer](https://drive.google.com/open?id=1fFMQDF6NV5Ysz48QLFYE8fEvbAxCsMBw) - [Single English speaker models with Parallel WaveGAN](https://drive.google.com/open?id=1HvB0_LDf1PVinJdehiuCt5gWmXGguqtx) - [Single English speaker knowledge distillation-based FastSpeech](https://drive.google.com/open?id=1wG-Y0itVYalxuLAHdkAHO7w1CWFfRPF4) You can download all of the pre-trained models and generated samples: - [All of the pre-trained E2E-TTS models](https://drive.google.com/open?id=1k9RRyc06Zl0mM2A7mi-hxNiNMFb_YzTF) - [All of the generated samples](https://drive.google.com/open?id=1bQGuqH92xuxOX__reWLP4-cif0cbpMLX) Note that in the generated samples, we use the following vocoders: Griffin-Lim (**GL**), WaveNet vocoder (**WaveNet**), Parallel WaveGAN (**ParallelWaveGAN**), and MelGAN (**MelGAN**). The neural vocoders are based on the following repositories. - [kan-bayashi/ParallelWaveGAN](https://github.com/kan-bayashi/ParallelWaveGAN): Parallel WaveGAN / MelGAN / Multi-band MelGAN - [r9y9/wavenet_vocoder](https://github.com/r9y9/wavenet_vocoder): 16 bit mixture of Logistics WaveNet vocoder - [kan-bayashi/PytorchWaveNetVocoder](https://github.com/kan-bayashi/PytorchWaveNetVocoder): 8 bit Softmax WaveNet Vocoder with the noise shaping If you want to build your own neural vocoder, please check the above repositories. [kan-bayashi/ParallelWaveGAN](https://github.com/kan-bayashi/ParallelWaveGAN) provides [the manual](https://github.com/kan-bayashi/ParallelWaveGAN#decoding-with-espnet-tts-models-features) about how to decode ESPnet-TTS model's features with neural vocoders. Please check it. Here we list all of the pre-trained neural vocoders. Please download and enjoy the generation of high-quality speech! | Model link | Lang | Fs [Hz] | Mel range [Hz] | FFT / Shift / Win [pt] | Model type | | :--------------------------------------------------------------------------------------------------- | :---: | :-----: | :------------: | :--------------------: | :---------------------------------------------------------------------- | | [ljspeech.wavenet.softmax.ns.v1](https://drive.google.com/open?id=1eA1VcRS9jzFa-DovyTgJLQ_jmwOLIi8L) | EN | 22.05k | None | 1024 / 256 / None | [Softmax WaveNet](https://github.com/kan-bayashi/PytorchWaveNetVocoder) | | [ljspeech.wavenet.mol.v1](https://drive.google.com/open?id=1sY7gEUg39QaO1szuN62-Llst9TrFno2t) | EN | 22.05k | None | 1024 / 256 / None | [MoL WaveNet](https://github.com/r9y9/wavenet_vocoder) | | [ljspeech.parallel_wavegan.v1](https://drive.google.com/open?id=1tv9GKyRT4CDsvUWKwH3s_OfXkiTi0gw7) | EN | 22.05k | None | 1024 / 256 / None | [Parallel WaveGAN](https://github.com/kan-bayashi/ParallelWaveGAN) | | [ljspeech.wavenet.mol.v2](https://drive.google.com/open?id=1es2HuKUeKVtEdq6YDtAsLNpqCy4fhIXr) | EN | 22.05k | 80-7600 | 1024 / 256 / None | [MoL WaveNet](https://github.com/r9y9/wavenet_vocoder) | | [ljspeech.parallel_wavegan.v2](https://drive.google.com/open?id=1Grn7X9wD35UcDJ5F7chwdTqTa4U7DeVB) | EN | 22.05k | 80-7600 | 1024 / 256 / None | [Parallel WaveGAN](https://github.com/kan-bayashi/ParallelWaveGAN) | | [ljspeech.melgan.v1](https://drive.google.com/open?id=1ipPWYl8FBNRlBFaKj1-i23eQpW_W_YcR) | EN | 22.05k | 80-7600 | 1024 / 256 / None | [MelGAN](https://github.com/kan-bayashi/ParallelWaveGAN) | | [ljspeech.melgan.v3](https://drive.google.com/open?id=1_a8faVA5OGCzIcJNw4blQYjfG4oA9VEt) | EN | 22.05k | 80-7600 | 1024 / 256 / None | [MelGAN](https://github.com/kan-bayashi/ParallelWaveGAN) | | [libritts.wavenet.mol.v1](https://drive.google.com/open?id=1jHUUmQFjWiQGyDd7ZeiCThSjjpbF_B4h) | EN | 24k | None | 1024 / 256 / None | [MoL WaveNet](https://github.com/r9y9/wavenet_vocoder) | | [jsut.wavenet.mol.v1](https://drive.google.com/open?id=187xvyNbmJVZ0EZ1XHCdyjZHTXK9EcfkK) | JP | 24k | 80-7600 | 2048 / 300 / 1200 | [MoL WaveNet](https://github.com/r9y9/wavenet_vocoder) | | [jsut.parallel_wavegan.v1](https://drive.google.com/open?id=1OwrUQzAmvjj1x9cDhnZPp6dqtsEqGEJM) | JP | 24k | 80-7600 | 2048 / 300 / 1200 | [Parallel WaveGAN](https://github.com/kan-bayashi/ParallelWaveGAN) | | [csmsc.wavenet.mol.v1](https://drive.google.com/open?id=1PsjFRV5eUP0HHwBaRYya9smKy5ghXKzj) | ZH | 24k | 80-7600 | 2048 / 300 / 1200 | [MoL WaveNet](https://github.com/r9y9/wavenet_vocoder) | | [csmsc.parallel_wavegan.v1](https://drive.google.com/open?id=10M6H88jEUGbRWBmU1Ff2VaTmOAeL8CEy) | ZH | 24k | 80-7600 | 2048 / 300 / 1200 | [Parallel WaveGAN](https://github.com/kan-bayashi/ParallelWaveGAN) | If you want to use the above pre-trained vocoders, please exactly match the feature setting with them.

TTS demo

ESPnet2
You can try the real-time demo in Google Colab. Please access the notebook from the following button and enjoy the real-time synthesis! - Real-time TTS demo with ESPnet2 [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/espnet/notebook/blob/master/espnet2_tts_realtime_demo.ipynb) English, Japanese, and Mandarin models are available in the demo.
ESPnet1
> NOTE: We are moving on ESPnet2-based development for TTS. Please check the latest demo in the above ESPnet2 demo. You can try the real-time demo in Google Colab. Please access the notebook from the following button and enjoy the real-time synthesis. - Real-time TTS demo with ESPnet1 [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/espnet/notebook/blob/master/tts_realtime_demo.ipynb) We also provide a shell script to perform synthesis. Go to a recipe directory and run `utils/synth_wav.sh` as follows: ```sh # Go to recipe directory and source path of espnet tools cd egs/ljspeech/tts1 && . ./path.sh # We use an upper-case char sequence for the default model. echo "THIS IS A DEMONSTRATION OF TEXT TO SPEECH." > example.txt # let's synthesize speech! synth_wav.sh example.txt # Also, you can use multiple sentences echo "THIS IS A DEMONSTRATION OF TEXT TO SPEECH." > example_multi.txt echo "TEXT TO SPEECH IS A TECHNIQUE TO CONVERT TEXT INTO SPEECH." >> example_multi.txt synth_wav.sh example_multi.txt ``` You can change the pre-trained model as follows: ```sh synth_wav.sh --models ljspeech.fastspeech.v1 example.txt ``` Waveform synthesis is performed with the Griffin-Lim algorithm and neural vocoders (WaveNet and ParallelWaveGAN). You can change the pre-trained vocoder model as follows: ```sh synth_wav.sh --vocoder_models ljspeech.wavenet.mol.v1 example.txt ``` WaveNet vocoder provides very high-quality speech, but it takes time to generate. See more details or available models via `--help`. ```sh synth_wav.sh --help ```

VC results

expand
- Transformer and Tacotron2-based VC You can listen to some samples on the [demo webpage](https://unilight.github.io/Publication-Demos/publications/transformer-vc/). - Cascade ASR+TTS as one of the baseline systems of VCC2020 The [Voice Conversion Challenge 2020](http://www.vc-challenge.org/) (VCC2020) adopts ESPnet to build an end-to-end based baseline system. In VCC2020, the objective is intra/cross-lingual nonparallel VC. You can download converted samples of the cascade ASR+TTS baseline system [here](https://drive.google.com/drive/folders/1oeZo83GrOgtqxGwF7KagzIrfjr8X59Ue?usp=sharing).

SLU results

expand
We list the performance on various SLU tasks and datasets using the metric reported in the original dataset paper | Task | Dataset | Metric | Result | Pre-trained Model | | ----------------------------------------------------------------- | :-------------: | :-------------: | :-------------: | :-------------------------------------------------------------------------------------------------------------------------------------------------------------------------: | | Intent Classification | SLURP | Acc | 86.3 | [link](https://github.com/espnet/espnet/tree/master/egs2/slurp/asr1/README.md) | | Intent Classification | FSC | Acc | 99.6 | [link](https://github.com/espnet/espnet/tree/master/egs2/fsc/asr1/README.md) | | Intent Classification | FSC Unseen Speaker Set | Acc | 98.6 | [link](https://github.com/espnet/espnet/tree/master/egs2/fsc_unseen/asr1/README.md) | | Intent Classification | FSC Unseen Utterance Set | Acc | 86.4 | [link](https://github.com/espnet/espnet/tree/master/egs2/fsc_unseen/asr1/README.md) | | Intent Classification | FSC Challenge Speaker Set | Acc | 97.5 | [link](https://github.com/espnet/espnet/tree/master/egs2/fsc_challenge/asr1/README.md) | | Intent Classification | FSC Challenge Utterance Set | Acc | 78.5 | [link](https://github.com/espnet/espnet/tree/master/egs2/fsc_challenge/asr1/README.md) | | Intent Classification | SNIPS | F1 | 91.7 | [link](https://github.com/espnet/espnet/tree/master/egs2/snips/asr1/README.md) | | Intent Classification | Grabo (Nl) | Acc | 97.2 | [link](https://github.com/espnet/espnet/tree/master/egs2/grabo/asr1/README.md) | | Intent Classification | CAT SLU MAP (Zn) | Acc | 78.9 | [link](https://github.com/espnet/espnet/tree/master/egs2/catslu/asr1/README.md) | | Intent Classification | Google Speech Commands | Acc | 98.4 | [link](https://github.com/espnet/espnet/tree/master/egs2/speechcommands/asr1/README.md) | | Slot Filling | SLURP | SLU-F1 | 71.9 | [link](https://github.com/espnet/espnet/tree/master/egs2/slurp_entity/asr1/README.md) | | Dialogue Act Classification | Switchboard | Acc | 67.5 | [link](https://github.com/espnet/espnet/tree/master/egs2/swbd_da/asr1/README.md) | | Dialogue Act Classification | Jdcinal (Jp) | Acc | 67.4 | [link](https://github.com/espnet/espnet/tree/master/egs2/jdcinal/asr1/README.md) | | Emotion Recognition | IEMOCAP | Acc | 69.4 | [link](https://github.com/espnet/espnet/tree/master/egs2/iemocap/asr1/README.md) | | Emotion Recognition | swbd_sentiment | Macro F1 | 61.4 | [link](https://github.com/espnet/espnet/tree/master/egs2/swbd_sentiment/asr1/README.md) | | Emotion Recognition | slue_voxceleb | Macro F1 | 44.0 | [link](https://github.com/espnet/espnet/tree/master/egs2/slue-voxceleb/asr1/README.md) | If you want to check the results of the other recipes, please check `egs2//asr1/RESULTS.md`.

CTC Segmentation demo

ESPnet1
[CTC segmentation](https://arxiv.org/abs/2007.09127) determines utterance segments within audio files. Aligned utterance segments constitute the labels of speech datasets. As a demo, we align the start and end of utterances within the audio file `ctc_align_test.wav`, using the example script `utils/asr_align_wav.sh`. For preparation, set up a data directory: ```sh cd egs/tedlium2/align1/ # data directory align_dir=data/demo mkdir -p ${align_dir} # wav file base=ctc_align_test wav=../../../test_utils/${base}.wav # recipe files echo "batchsize: 0" > ${align_dir}/align.yaml cat << EOF > ${align_dir}/utt_text ${base} THE SALE OF THE HOTELS ${base} IS PART OF HOLIDAY'S STRATEGY ${base} TO SELL OFF ASSETS ${base} AND CONCENTRATE ${base} ON PROPERTY MANAGEMENT EOF ``` Here, `utt_text` is the file containing the list of utterances. Choose a pre-trained ASR model that includes a CTC layer to find utterance segments: ```sh # pre-trained ASR model model=wsj.transformer_small.v1 mkdir ./conf && cp ../../wsj/asr1/conf/no_preprocess.yaml ./conf ../../../utils/asr_align_wav.sh \ --models ${model} \ --align_dir ${align_dir} \ --align_config ${align_dir}/align.yaml \ ${wav} ${align_dir}/utt_text ``` Segments are written to `aligned_segments` as a list of file/utterance names, utterance start and end times in seconds, and a confidence score. The confidence score is a probability in log space that indicates how well the utterance was aligned. If needed, remove bad utterances: ```sh min_confidence_score=-5 awk -v ms=${min_confidence_score} '{ if ($5 > ms) {print} }' ${align_dir}/aligned_segments ``` The demo script `utils/ctc_align_wav.sh` uses an already pre-trained ASR model (see the list above for more models). It is recommended to use models with RNN-based encoders (such as BLSTMP) for aligning large audio files; rather than using Transformer models with a high memory consumption on longer audio data. The sample rate of the audio must be consistent with that of the data used in training; adjust with `sox` if needed. A full example recipe is in `egs/tedlium2/align1/`.
ESPnet2
[CTC segmentation](https://arxiv.org/abs/2007.09127) determines utterance segments within audio files. Aligned utterance segments constitute the labels of speech datasets. As a demo, we align the start and end of utterances within the audio file `ctc_align_test.wav`. This can be done either directly from the Python command line or using the script `espnet2/bin/asr_align.py`. From the Python command line interface: ```python # load a model with character tokens from espnet_model_zoo.downloader import ModelDownloader d = ModelDownloader(cachedir="./modelcache") wsjmodel = d.download_and_unpack("kamo-naoyuki/wsj") # load the example file included in the ESPnet repository import soundfile speech, rate = soundfile.read("./test_utils/ctc_align_test.wav") # CTC segmentation from espnet2.bin.asr_align import CTCSegmentation aligner = CTCSegmentation( **wsjmodel , fs=rate ) text = """ utt1 THE SALE OF THE HOTELS utt2 IS PART OF HOLIDAY'S STRATEGY utt3 TO SELL OFF ASSETS utt4 AND CONCENTRATE ON PROPERTY MANAGEMENT """ segments = aligner(speech, text) print(segments) # utt1 utt 0.26 1.73 -0.0154 THE SALE OF THE HOTELS # utt2 utt 1.73 3.19 -0.7674 IS PART OF HOLIDAY'S STRATEGY # utt3 utt 3.19 4.20 -0.7433 TO SELL OFF ASSETS # utt4 utt 4.20 6.10 -0.4899 AND CONCENTRATE ON PROPERTY MANAGEMENT ``` Aligning also works with fragments of the text. For this, set the `gratis_blank` option that allows skipping unrelated audio sections without penalty. It's also possible to omit the utterance names at the beginning of each line by setting `kaldi_style_text` to False. ```python aligner.set_config( gratis_blank=True, kaldi_style_text=False ) text = ["SALE OF THE HOTELS", "PROPERTY MANAGEMENT"] segments = aligner(speech, text) print(segments) # utt_0000 utt 0.37 1.72 -2.0651 SALE OF THE HOTELS # utt_0001 utt 4.70 6.10 -5.0566 PROPERTY MANAGEMENT ``` The script `espnet2/bin/asr_align.py` uses a similar interface. To align utterances: ```sh # ASR model and config files from pre-trained model (e.g., from cachedir): asr_config=/config.yaml asr_model=/valid.*best.pth # prepare the text file wav="test_utils/ctc_align_test.wav" text="test_utils/ctc_align_text.txt" cat << EOF > ${text} utt1 THE SALE OF THE HOTELS utt2 IS PART OF HOLIDAY'S STRATEGY utt3 TO SELL OFF ASSETS utt4 AND CONCENTRATE utt5 ON PROPERTY MANAGEMENT EOF # obtain alignments: python espnet2/bin/asr_align.py --asr_train_config ${asr_config} --asr_model_file ${asr_model} --audio ${wav} --text ${text} # utt1 ctc_align_test 0.26 1.73 -0.0154 THE SALE OF THE HOTELS # utt2 ctc_align_test 1.73 3.19 -0.7674 IS PART OF HOLIDAY'S STRATEGY # utt3 ctc_align_test 3.19 4.20 -0.7433 TO SELL OFF ASSETS # utt4 ctc_align_test 4.20 4.97 -0.6017 AND CONCENTRATE # utt5 ctc_align_test 4.97 6.10 -0.3477 ON PROPERTY MANAGEMENT ``` The output of the script can be redirected to a `segments` file by adding the argument `--output segments`. Each line contains the file/utterance name, utterance start and end times in seconds, and a confidence score; optionally also the utterance text. The confidence score is a probability in log space that indicates how well the utterance was aligned. If needed, remove bad utterances: ```sh min_confidence_score=-7 # here, we assume that the output was written to the file `segments` awk -v ms=${min_confidence_score} '{ if ($5 > ms) {print} }' segments ``` See the module documentation for more information. It is recommended to use models with RNN-based encoders (such as BLSTMP) for aligning large audio files; rather than using Transformer models that have a high memory consumption on longer audio data. The sample rate of the audio must be consistent with that of the data used in training; adjust with `sox` if needed. Also, we can use this tool to provide token-level segmentation information if we prepare a list of tokens instead of that of utterances in the `text` file. See the discussion in https://github.com/espnet/espnet/issues/4278#issuecomment-1100756463.

Citations

@inproceedings{watanabe2018espnet,
  author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
  title={{ESPnet}: End-to-End Speech Processing Toolkit},
  year={2018},
  booktitle={Proceedings of Interspeech},
  pages={2207--2211},
  doi={10.21437/Interspeech.2018-1456},
  url={http://dx.doi.org/10.21437/Interspeech.2018-1456}
}
@inproceedings{hayashi2020espnet,
  title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit},
  author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu},
  booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
  pages={7654--7658},
  year={2020},
  organization={IEEE}
}
@inproceedings{inaguma-etal-2020-espnet,
    title = "{ESP}net-{ST}: All-in-One Speech Translation Toolkit",
    author = "Inaguma, Hirofumi  and
      Kiyono, Shun  and
      Duh, Kevin  and
      Karita, Shigeki  and
      Yalta, Nelson  and
      Hayashi, Tomoki  and
      Watanabe, Shinji",
    booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: System Demonstrations",
    month = jul,
    year = "2020",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://www.aclweb.org/anthology/2020.acl-demos.34",
    pages = "302--311",
}
@article{hayashi2021espnet2,
  title={Espnet2-tts: Extending the edge of tts research},
  author={Hayashi, Tomoki and Yamamoto, Ryuichi and Yoshimura, Takenori and Wu, Peter and Shi, Jiatong and Saeki, Takaaki and Ju, Yooncheol and Yasuda, Yusuke and Takamichi, Shinnosuke and Watanabe, Shinji},
  journal={arXiv preprint arXiv:2110.07840},
  year={2021}
}
@inproceedings{li2020espnet,
  title={{ESPnet-SE}: End-to-End Speech Enhancement and Separation Toolkit Designed for {ASR} Integration},
  author={Chenda Li and Jing Shi and Wangyou Zhang and Aswin Shanmugam Subramanian and Xuankai Chang and Naoyuki Kamo and Moto Hira and Tomoki Hayashi and Christoph Boeddeker and Zhuo Chen and Shinji Watanabe},
  booktitle={Proceedings of IEEE Spoken Language Technology Workshop (SLT)},
  pages={785--792},
  year={2021},
  organization={IEEE},
}
@inproceedings{arora2021espnet,
  title={{ESPnet-SLU}: Advancing Spoken Language Understanding through ESPnet},
  author={Arora, Siddhant and Dalmia, Siddharth and Denisov, Pavel and Chang, Xuankai and Ueda, Yushi and Peng, Yifan and Zhang, Yuekai and Kumar, Sujay and Ganesan, Karthik and Yan, Brian and others},
  booktitle={ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
  pages={7167--7171},
  year={2022},
  organization={IEEE}
}
@inproceedings{shi2022muskits,
  author={Shi, Jiatong and Guo, Shuai and Qian, Tao and Huo, Nan and Hayashi, Tomoki and Wu, Yuning and Xu, Frank and Chang, Xuankai and Li, Huazhe and Wu, Peter and Watanabe, Shinji and Jin, Qin},
  title={{Muskits}: an End-to-End Music Processing Toolkit for Singing Voice Synthesis},
  year={2022},
  booktitle={Proceedings of Interspeech},
  pages={4277-4281},
  url={https://www.isca-speech.org/archive/pdfs/interspeech_2022/shi22d_interspeech.pdf}
}
@inproceedings{lu22c_interspeech,
  author={Yen-Ju Lu and Xuankai Chang and Chenda Li and Wangyou Zhang and Samuele Cornell and Zhaoheng Ni and Yoshiki Masuyama and Brian Yan and Robin Scheibler and Zhong-Qiu Wang and Yu Tsao and Yanmin Qian and Shinji Watanabe},
  title={{ESPnet-SE++: Speech Enhancement for Robust Speech Recognition, Translation, and Understanding}},
  year=2022,
  booktitle={Proc. Interspeech 2022},
  pages={5458--5462},
}
@article{gao2022euro,
  title={{EURO}: {ESPnet} Unsupervised ASR Open-source Toolkit},
  author={Gao, Dongji and Shi, Jiatong and Chuang, Shun-Po and Garcia, Leibny Paola and Lee, Hung-yi and Watanabe, Shinji and Khudanpur, Sanjeev},
  journal={arXiv preprint arXiv:2211.17196},
  year={2022}
}
@article{peng2023reproducing,
  title={Reproducing Whisper-Style Training Using an Open-Source Toolkit and Publicly Available Data},
  author={Peng, Yifan and Tian, Jinchuan and Yan, Brian and Berrebbi, Dan and Chang, Xuankai and Li, Xinjian and Shi, Jiatong and Arora, Siddhant and Chen, William and Sharma, Roshan and others},
  journal={arXiv preprint arXiv:2309.13876},
  year={2023}
}