A plug-and-play BEV generalization framework that can leverage both unlabeled and labeled data.
git clone https://github.com/EnVision-Research/Generalizable-BEV.git
cd Generalizable-BEV
pip install -v -e .
The preparation of the dataset is actually to generate the corresponding index (pkl files), which can then be used with the dataset that we have created.
The pre-processed pkl of the three data sets can be downloaded directly [here].
bash tools/dist_train.sh $confige_file$ $Gpus_num$
For example:
bash tools/dist_train.sh ./configs/PDBEV/pdbev-r50-cbgs-NUS2X-dg.py 8 # nuScenes as source domain, using 8 gpus
bash tools/dist_train.sh ./configs/PDBEV/pdbev-r50-cbgs-LYFT2X-dg.py 8 # Lyft as source domain, using 8 gpus
bash tools/dist_train.sh ./configs/PDBEV/pdbev-r50-cbgs-DA2X-dg.py 8 # DeepAccident as source domain, using 8 gpus
bash tools/dist_train.sh $confige_file$ c --checkpoint $the pretrained models on source domain$
For example:
bash tools/dist_train.sh ./configs/PDBEV/pcbev-uda-NUS2LYFT.py 8 --checkpoint ./work_dirs/pdbev-r50-cbgs-NUS2X-dg/epoch_23.pth
# nuScenes as source domain, LYFT as target domain, using 8 gpus, loading DG pretrain models at 23 epoch
# You only need to modify the path of the configuration file of different data set D and the corresponding model M to test the performance of model M on the corresponding data set D. It is worth mentioning that none of our algorithms change the model infrastructure, so they are only used for BEVDepth evaluation.
bash ./tools/dist_test.sh &test dataset config_file& &model_path& $Gpus_num$ --eval bbox --out $output_path$
For example:
bash ./tools/dist_test.sh ./configs/bevdet_our/bevdepth-r50-cbgs-pc-lyft.py ./work_dirs/pdbev-r50-cbgs-NUS2X-dg/epoch_24.pth 8 --eval bbox --out ./work_dirs/bevdepth-r50-cbgs-pc-nus/nus.pkl
This project is not possible without multiple great open-sourced code bases. We list some notable examples: BEVDet, DeepAccident, Lyft.
hlu585@connect.hkust-gz.edu.cn
@InProceedings{PD-BEV,
author = {Hao LU, Yunpeng ZHANG, Qing LIAN, Dalong DU, Ying-Cong CHEN},
title = {Towards Generalizable Multi-Camera 3D Object Detection via Perspective Debiasing},
booktitle = {arXiv preprint arXiv:2310.11346},
year = {2023},
}