The official code for the NeurIPS 2021 paper Generalized Jensen-Shannon Divergence Loss for Learning with Noisy Labels
Create conda environment, activate environment, and install additional pip packages
conda env create -f gjs_env.yml -n gjs
conda activate gjs
python -m pip install -r requirements.txt
Please check scripts/ folder for yaml files corresponding to different experiments.
For example, to run JS on 40% symmetric noise on the full CIFAR-10 training set, run the following
python train.py -c scripts/C10/sym/js-40.yaml \
--data_dir /path/to/dataset/
or GJS on 20% asymmetric noise on CIFAR-100
python train.py -c scripts/C100/asym/gjs-20.yaml \
--data_dir /path/to/dataset/
or GJS on WebVision
python train.py -c scripts/WebVision/gjs.yaml \
--data_dir /path/to/dataset/