The Espresso Sequencer offers rollups credible neutrality and enhanced interoperability, without compromising on scale. Consisting of a data availability solution and a decentralized network of nodes that sequences transactions, layer-2 rollups can leverage the Espresso Sequencer to give developers and end users fast confirmations, low (and fair) fees, and robust infrastructure.
The diagram below shows how the Espresso Confirmation Layer fits into the rollup centric Ethereum ecosystem. See Architecture for details.
In order for ZK rollups to rely on blocks produced by Espresso as a source of transactions, it is required to adjust the circuit that encodes the state update logic. See zk-rollups integration for more details.
Refer to sequencer-example-l2 for instructions on how to run a dockerized Espresso Sequencer network with an example Layer 2 rollup application.
git clone git@github.com:EspressoSystems/espresso-sequencer
.nix-shell
, or nix develop
, or direnv allow
if using direnv.The rust code documentation can be found at sequencer.docs.espressosys.com. Please note the disclaimer about API stability at the end of the readme.
To generate the documentation locally and view it in the browser, run
just doc --open
just pull # to pull docker images
just test
make doc
Docker images and the docker-compose-demo.yaml file are provided for convenience. The
Docker-based demo fetches the images from the ghcr
repository, where they are updated with every push to main
on
GitHub. For testing uncommitted changes, you can also run the binaries by manually building and running the services.
Build all executables with cargo build --release
. You may then start a sequencer network. First, start an
orchestrator. Choose a port $PORT
to run it on and decide how many sequencer nodes $N
you will use, then run
target/release/orchestrator -p $PORT -n $N
.
The sequencer will distribute a HotShot configuration to all the nodes which connect to it, which specifies consensus
parameters like view timers. There is a default config, but you can override any parameters you want by passing
additional options to the orchestrator
executable. Run target/release/orchestrator --help
to see a list of available
options.
Next, you must launch a cdn
instance, which is necessary to facilitate consensus.
just dev-cdn -- -p 1738
In this case, we run it on port 1738.
Once you have started the orchestrator and the CDN, you must connect $N
sequencer nodes to them, after which the
network will start up automatically. To start one node, run
target/release/sequencer \
--orchestrator-url http://localhost:$PORT \
--cdn-endpoint "127.0.0.1:1738" \
-- http --port 8083 -- query --storage-path storage -- submit
A useful Bash snippet for running $N
nodes simultaneously in the background of your shell is:
for i in `seq $N`; do
target/release/sequencer \
--orchestrator-url http://localhost:$PORT \
--cdn-endpoint "127.0.0.1:1738" \
done
For running a full demo natively run just demo-native
.
A foundry project for the contracts specific to HotShot can be found in the directory contracts
.
To compile
forge build
To run the tests
forge test
In order to avoid constant warnings about checksum mismatches with svm-rs
managed solc
we set FOUNDRY_SRC
to solc installed via flake.nix.
just gen-bindings
.contracts/src
folderTo generate documentation in ./docs
for solidity code run
forge doc
To deploy the contracts to a local testnet, first run a dev chain (e.g. anvil
), then run
forge script DeployHotShot --broadcast --rpc-url local
To deploy to sepolia set SEPOLIA_RPC_URL
and MNEMONIC
env vars and run
forge script DeployHotShot --broadcast --rpc-url sepolia
To additionally verify the contact on etherscan set the ETHERSCAN_API_KEY
env var and run
forge script DeployHotShot --broadcast --rpc-url sepolia --verify
Running the script will save a file with details about the deployment in contracts/broadcast/$CHAIN_ID
.
contracts/demo
foldercontracts/src
folderThe gas consumption for verifying a plonk proof as well as updating the state of the light client contract can be seen by running:
> just gas-benchmarks
> cat gas-benchmarks.txt
[PASS] test_verify_succeeds() (gas: 507774)
[PASS] testCorrectUpdateBench() (gas: 594533)
In order to profile the gas consumption of the light client contract do the following:
SEPOLIA_RPC_URL
, MNEMONIC
and ETHERSCAN_API_KEY
.just lc-contract-profiling-sepolia
newFinalizedState
in order to
obtain the gas profile.This is only necessary to fetch private images.
docker login ghcr.io --username <you_github_id> --password <your_personal_access_token>
(c) 2022 Espresso Systems espresso-sequencer
was developed by Espresso Systems. While we plan to adopt an open
source license, we have not yet selected one. As such, all rights are reserved for the time being. Please reach out to
us if you have thoughts on licensing.
DISCLAIMER: This software is provided "as is" and its security has not been externally audited. Use at your own risk.
DISCLAIMER: The Rust library crates provided in this repository are intended primarily for use by the binary targets in this repository. We make no guarantees of public API stability. If you are building on these crates, reach out by opening an issue to discuss the APIs you need.