|PyPI Version| |Tests Status| |Coverage Status| |Docs Status|
Multiple-tau correlation is computed on a logarithmic scale (less
data points are computed) and is thus much faster than conventional
correlation on a linear scale such as numpy.correlate <http://docs.scipy.org/doc/numpy/reference/generated/numpy.correlate.html>
__.
The only requirement for multipletau
is Python 3.x and
NumPy <http://www.numpy.org/>
__. Install multipletau from the
Python package index:
::
pip install multipletau
The documentation, including the reference and examples, is available
on readthedocs.io <https://multipletau.readthedocs.io/en/stable/>
__.
.. code:: python
import numpy as np
import multipletau
a = np.linspace(2,5,42)
v = np.linspace(1,6,42)
multipletau.correlate(a, v, m=2)
array([[ 0. , 569.56097561],
[ 1. , 549.87804878],
[ 2. , 530.37477692],
[ 4. , 491.85812017],
[ 8. , 386.39500297]])
The multipletau package should be cited like this (replace "x.x.x" with the actual version of multipletau that you used and "DD Month YYYY" with a matching date).
Paul Müller (2012) Python multiple-tau algorithm (Version x.x.x) [Computer program]. Available at <https://pypi.python.org/pypi/multipletau/>
__ (Accessed DD Month YYYY)
You can find out what version you are using by typing (in a Python console):
.. code:: python
>>> import multipletau
>>> multipletau.__version__
'0.4.0'
.. |PyPI Version| image:: https://img.shields.io/pypi/v/multipletau.svg :target: https://pypi.python.org/pypi/multipletau .. |Tests Status| image:: https://img.shields.io/github/actions/workflow/status/FCS-analysis/multipletau/check.yml :target: https://github.com/FCS-analysis/multipletau/actions?query=workflow%3AChecks .. |Coverage Status| image:: https://img.shields.io/codecov/c/github/FCS-analysis/multipletau/master.svg :target: https://codecov.io/gh/FCS-analysis/multipletau .. |Docs Status| image:: https://readthedocs.org/projects/multipletau/badge/?version=latest :target: https://readthedocs.org/projects/multipletau/builds/