This is the official repository for our ICCV 2023 paper Efficient Region-Aware Neural Radiance Fields for High-Fidelity Talking Portrait Synthesis.
Tested on Ubuntu 18.04, Pytorch 1.12 and CUDA 11.3.
conda create -n ernerf python=3.10
conda install pytorch==1.12.1 torchvision==0.13.1 cudatoolkit=11.3 -c pytorch
pip install -r requirements.txt
pip install "git+https://github.com/facebookresearch/pytorch3d.git"
pip install tensorflow-gpu==2.8.0
Prepare face-parsing model.
wget https://github.com/YudongGuo/AD-NeRF/blob/master/data_util/face_parsing/79999_iter.pth?raw=true -O data_utils/face_parsing/79999_iter.pth
Prepare the 3DMM model for head pose estimation.
wget https://github.com/YudongGuo/AD-NeRF/blob/master/data_util/face_tracking/3DMM/exp_info.npy?raw=true -O data_utils/face_tracking/3DMM/exp_info.npy
wget https://github.com/YudongGuo/AD-NeRF/blob/master/data_util/face_tracking/3DMM/keys_info.npy?raw=true -O data_utils/face_tracking/3DMM/keys_info.npy
wget https://github.com/YudongGuo/AD-NeRF/blob/master/data_util/face_tracking/3DMM/sub_mesh.obj?raw=true -O data_utils/face_tracking/3DMM/sub_mesh.obj
wget https://github.com/YudongGuo/AD-NeRF/blob/master/data_util/face_tracking/3DMM/topology_info.npy?raw=true -O data_utils/face_tracking/3DMM/topology_info.npy
Download 3DMM model from Basel Face Model 2009:
# 1. copy 01_MorphableModel.mat to data_util/face_tracking/3DMM/
# 2.
cd data_utils/face_tracking
python convert_BFM.py
We get the experiment videos mainly from AD-NeRF, DFRF, GeneFace and YouTube. Due to copyright restrictions, we can't distribute all of them. You may have to download and crop these videos by youself. Here is an example training video (Obama) from AD-NeRF with the resolution of 450x450.
mkdir -p data/obama
wget https://github.com/YudongGuo/AD-NeRF/blob/master/dataset/vids/Obama.mp4?raw=true -O data/obama/obama.mp4
We also provide pretrained checkpoints on the Obama video clip. After completing the data pre-processing step, you can download and test them by:
python main.py data/obama/ --workspace trial_obama/ -O --test --ckpt trial_obama/checkpoints/ngp.pth # head
python main.py data/obama/ --workspace trial_obama_torso/ -O --test --torso --ckpt trial_obama_torso/checkpoints/ngp.pth # head+torso
The test results should be about:
setting | PSNR | LPIPS | LMD |
---|---|---|---|
head | 35.607 | 0.0178 | 2.525 |
head+torso | 26.594 | 0.0446 | 2.550 |
Put training video under data/<ID>/<ID>.mp4
.
The video must be 25FPS, with all frames containing the talking person. The resolution should be about 512x512, and duration about 1-5 min.
Run script to process the video. (may take several hours)
python data_utils/process.py data/<ID>/<ID>.mp4
Obtain AU45 for eyes blinking
Run FeatureExtraction
in OpenFace, rename and move the output CSV file to data/<ID>/au.csv
.
In our paper, we use DeepSpeech features for evaluation.
You should specify the type of audio feature by --asr_model <deepspeech, esperanto, hubert>
when training and testing.
DeepSpeech
python data_utils/deepspeech_features/extract_ds_features.py --input data/<name>.wav # save to data/<name>.npy
Wav2Vec
You can also try to extract audio features via Wav2Vec like RAD-NeRF by:
python data_utils/wav2vec.py --wav data/<name>.wav --save_feats # save to data/<name>_eo.npy
HuBERT
In our test, HuBERT extractor performs better for more languages, which has already been used in GeneFace.
# Borrowed from GeneFace. English pre-trained.
python data_utils/hubert.py --wav data/<name>.wav # save to data/<name>_hu.npy
First time running will take some time to compile the CUDA extensions.
# train (head and lpips finetune, run in sequence)
python main.py data/obama/ --workspace trial_obama/ -O --iters 100000
python main.py data/obama/ --workspace trial_obama/ -O --iters 125000 --finetune_lips --patch_size 32
# train (torso)
# <head>.pth should be the latest checkpoint in trial_obama
python main.py data/obama/ --workspace trial_obama_torso/ -O --torso --head_ckpt <head>.pth --iters 200000
# test on the test split
python main.py data/obama/ --workspace trial_obama/ -O --test # only render the head and use GT image for torso
python main.py data/obama/ --workspace trial_obama_torso/ -O --torso --test # render both head and torso
# Adding "--smooth_path" may help decrease the jitter of the head, while being less accurate to the original pose.
python main.py data/obama/ --workspace trial_obama_torso/ -O --torso --test --test_train --aud <audio>.npy
Consider citing as below if you find this repository helpful to your project:
@InProceedings{li2023ernerf,
author = {Li, Jiahe and Zhang, Jiawei and Bai, Xiao and Zhou, Jun and Gu, Lin},
title = {Efficient Region-Aware Neural Radiance Fields for High-Fidelity Talking Portrait Synthesis},
booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
month = {October},
year = {2023},
pages = {7568-7578}
}
This code is developed heavily relying on RAD-NeRF, and also DFRF, GeneFace, and AD-NeRF. Thanks for these great projects.