Python 2.7.x module containing functions to perform EEG microstate decomposition and information-theoretic analysis. Based on the publications:
[1] von Wegner F, Tagliazucchi E, Laufs H. Information-theoretical analysis of resting state EEG microstate sequences - non-Markovianity, non-stationarity and periodicities. NeuroImage 158 (2017) 99–111.
[2] von Wegner F, Laufs H. Information-theoretical analysis of EEG microstate sequences in Python. Front Neuroinformatics (2018) doi: 10.3389/fninf.2018.00030.
[3] von Wegner F, Knaut P, Laufs H. EEG microstate sequences from different clustering algorithms are information-theoretically invariant. Front Comp Neurosci (2018) doi: 10.3389/fncom.2018.00070.
The package contains:
Author: Frederic von Wegner, 05/2017, fvwegneratgmail.com