GDGVIT / quicktext

Toolkit for text classification
https://picturate.github.io/quicktext/
MIT License
3 stars 4 forks source link
hacktoberfest hacktoberfest2020 pytorch spacy text-classification

DSC VIT Logo

QuickText

Toolkit For Text Classification

AboutFeaturesInstallGetting StartedExamples

[![MIT license](https://img.shields.io/badge/License-MIT-blue.svg)](https://lbesson.mit-license.org/) [![DOCS](https://img.shields.io/badge/Docs-latest-green.svg)](https://picturate.github.io/quickTextCassifier/) ![CI Tests](https://github.com/GDGVIT/quicktext/workflows/CI%20Tests/badge.svg) [![codecov](https://codecov.io/gh/picturate/qtc/branch/master/graph/badge.svg)](https://codecov.io/gh/GDGVIT/quicktext) # About Quicktext is a framework for developing LSTM and CNN based text classification models. # Features - It is __easy__ to learn and use quicktext - The classifiers can be added to __sPacy__ pipeline - It's built using __PyTorch__, hence has inbuilt __quantization__ and __onnx__ support # Installation Install from source ``` pip install -q git+https://github.com/GDGVIT/quicktext.git ``` # Getting Started ```python from quicktext import TextClassifier from quicktext import Trainer from quicktext.datasets import get_imdb imdb = get_imdb() classifier = TextClassifier(num_class=2, arch='bilstm') trainer = Trainer(classifier) trainer.fit(imdb.train, imdb.val, epochs=10, batch_size=64, gpus=1) ``` # Supported Models - Bidirectional LSTM - CNN 2D filters - Fasttext - RCNN - Seq2Seq Attention # Examples - [Spam or ham, spam classification]() # Contributors

Ramaneswaran

Raman

profile linkedin

Made with :heart: by DSC VIT