There were no errors when building the knowledge base, but there were errors when querying. I use Qwen2.5-7BInstruct-GPTQ-Int4 as the large language model and bge-large-zh-v1.5 as the vector model. Use PDF file as input.
please help me ! thank you !!
The code is as follows:
import os
import asyncio
from lightrag import LightRAG, QueryParam
from lightrag.llm import openai_complete_if_cache, openai_embedding
from lightrag.utils import EmbeddingFunc
import numpy as np
from lightrag.llm import hf_embedding
from transformers import AutoModel, AutoTokenizer
WORKING_DIR = "./dickens/"
if not os.path.exists(WORKING_DIR):
os.mkdir(WORKING_DIR)
async def llm_model_func(
prompt, system_prompt=None, history_messages=[], **kwargs
) -> str:
return await openai_complete_if_cache(
"Qwen/Qwen2.5-7B-Instruct-GPTQ-Int4",
prompt,
system_prompt=system_prompt,
history_messages=history_messages,
api_key=os.getenv("EMPTY"),
base_url="http://0.0.0.0:8000/v1",
**kwargs,
)
async def main():
try:
rag = LightRAG(
working_dir=WORKING_DIR,
llm_model_func=llm_model_func,
embedding_func=EmbeddingFunc(
embedding_dim=1024,
max_token_size=8192,
func=lambda texts: hf_embedding(
texts,
tokenizer=AutoTokenizer.from_pretrained(
"bge-large-zh-v1.5", model_max_length=512
),
embed_model=AutoModel.from_pretrained(
"bge-large-zh-v1.5"
),
),
),
)
import textract
file_path = '哈利波特第一章和第二章.pdf'
text_content = textract.process(file_path)
await rag.ainsert(text_content.decode('utf-8'))
while(True):
string = input()
print(
await rag.aquery(
string,
param=QueryParam(mode="hybrid"),
)
)
except Exception as e:
print(f"An error occurred: {e}")
if __name__ == "__main__":
asyncio.run(main())
##error:
INFO:lightrag:Inserting 123 vectors to entities
We strongly recommend passing in an `attention_mask` since your input_ids may be padded. See https://huggingface.co/docs/transformers/troubleshooting#incorrect-output-when-padding-tokens-arent-masked.
You may ignore this warning if your `pad_token_id` (0) is identical to the `bos_token_id` (0), `eos_token_id` (2), or the `sep_token_id` (None), and your input is not padded.
INFO:lightrag:Inserting 118 vectors to relationships
INFO:lightrag:Writing graph with 126 nodes, 118 edges
你好
INFO:httpx:HTTP Request: POST http://0.0.0.0:8000/v1/chat/completions "HTTP/1.1 200 OK"
INFO:lightrag:Global query uses 59 entites, 60 relations, 3 text units
/usr/local/lib/python3.10/site-packages/lightrag/operate.py:1016: UserWarning: Low Level context is None. Return empty Low entity/relationship/source
warnings.warn(
INFO:httpx:HTTP Request: POST http://0.0.0.0:8000/v1/chat/completions "HTTP/1.1 400 Bad Request"
An error occurred: Error code: 400 - {'object': 'error', 'message': 'could not broadcast input array from shape (535,) into shape (512,)', 'type': 'BadRequestError', 'param': None, 'code': 400}
There were no errors when building the knowledge base, but there were errors when querying. I use Qwen2.5-7BInstruct-GPTQ-Int4 as the large language model and bge-large-zh-v1.5 as the vector model. Use PDF file as input. please help me ! thank you !!
The code is as follows: