HexHive / retrowrite

RetroWrite -- Retrofitting compiler passes through binary rewriting
Other
674 stars 77 forks source link
aarch64 assembly binary-rewriting disassembler reverse-engineering security x86-64

Retrowrite

Retrowrite is a static binary rewriter for x64 and aarch64. It works without heuristics, does not introduce overhead and uses the symbolization technique (also known as reassemblable assembly) to insert instrumentation to binaries without the need for source code.

Please note that the x64 version and the arm64 version use different rewriting algorithms and support a different set of features.

For technical details, you can read the paper (in IEEE S&P'20) for the x64 version and this thesis for the arm64 version.

KRetrowrite is a variant of the x64 version that supports the rewriting of Linux kernel modules.

General setup

Retrowrite is implemented in python3 (3.6). It depends on pyelftools and capstone. To install the dependencies, please run:

pip install -r requirements.txt

It is not recommended to install the dependencies from your distro's package managers, as they might be outdated.

Features

retrowrite-x64 retrowrite-aarch64
stripped binaries :x: (WIP) :white_check_mark:
Non-PIE binaries :x: :white_check_mark:
Non-standard compilers :x: :white_check_mark:
Zero overhead :white_check_mark: :white_check_mark:
Kernel modules support :white_check_mark: :x:
AFL-coverage instrumentation :white_check_mark: :white_check_mark:
ASan instrumentation :white_check_mark: :white_check_mark:
C++ support :x: (WIP) :x: (WIP)

Command line options

(retro) $ retrowrite --help
usage: retrowrite [-h] [-a] [-A] [-m MODULE] [-k] [--kcov] [-c] [--ignore-no-pie] [--ignore-stripped] [-v] bin outfile

positional arguments:
  bin                   Input binary to load
  outfile               Symbolized ASM output

optional arguments:
  -h, --help            show this help message and exit
  -a, --assemble        Assemble instrumented assembly file into instrumented binary
  -A, --asan            Add binary address sanitizer instrumentation
  -m MODULE, --module MODULE
                        Use specified instrumentation pass/module in rwtools directory
  -k, --kernel          Instrument a kernel module
  --kcov                Instrument the kernel module with kcov
  -c, --cache           Save/load register analysis cache (only used with --asan)
  --ignore-no-pie       Ignore position-independent-executable check (use with caution)
  --ignore-stripped     Ignore stripped executable check (use with caution)
  -v, --verbose         Verbose output

Instrumentation passes

Select the instrumentation pass you would like to apply with retrowrite -m <pass> You can find the available instrumentation passes in folders rwtools_x64 and rwtools_arm64.

Available instrumentation passes for x64:

Available instrumentation passes for aarch64:

Example usage

a. Instrument Binary with Binary-Address Sanitizer (BASan)

retrowrite --asan </path/to/binary/> </path/to/output/binary>

Note: If on x64, make sure that the binary is position-independent and is not stripped. This can be checked using file command (the output should say ELF shared object).

Example, create an instrumented version of /bin/ls:

retrowrite --asan /bin/ls ls-basan-instrumented.s

This will generate an assembly (.s) file. To recompile the assembly back into a binary, it depends on the architecture:

x64

The generated assembly can be assembled and linked using any compiler, like:

gcc ls-basan-instrumented.s -lasan -o ls-basan-instrumented

debug in case you get the error undefined reference to `__asan_init_v4' , replace "asan_init_v4" by "asan_init" in the assembly file, the following command can help you do that: sed -i 's/asan_init_v4/asan_init/g' ls-basan-instrumented.s

aarch64

On aarch64, we also rely on standard compilers to assemble and link but the collection of compiler flags is slightly more involved and so we provide the -a switch on the main retrowrite executable to do that for you:

retrowrite -a ls-basan-instrumented.s -lasan -o ls-basan-instrumented

b. Instrument a binary with coverage information and fuzz with AFL

x64

To generate an AFL-instrumented binary, first generate the symbolized assembly as described above. Then, recompile the symbolized assembly with afl-gcc from afl++ like this:

$ AFL_AS_FORCE_INSTRUMENT=1 afl-gcc foo.s -o foo

or afl-clang.

aarch64

To instrument a binary with coverage information, use the coverage instrumentation pass with retrowrite -m coverage <input file> <output asm>. Re-assemble the binary with retrowrite -a <output asm> <new binary>.

The binary can now be fuzzed with:

afl-fuzz -i <seed folder> -o <out folder> <new binary>

Retrowrite also tries to add instrumentation to act as a forkserver for AFL; in case this causes problems, you can disable this behaviour by using export AFL_NO_FORKSERVER=1

c. Generate Symbolized Assembly

To generate symbolized assembly that may be modified by hand or post-processed by existing tools, just do not specify any instrumentation pass:

retrowrite </path/to/binary> <path/to/output/asm/files>

The output asm files can be freely edited by hand or by other tools. Post-modification, the asm files may be assembled to working binaries as described above.

While retrowrite is interoperable with other tools, we strongly encourage researchers to use the retrowrite API for their binary instrumentation / modification needs! This saves the additional effort of having to load and parse binaries or assembly files.

KRetrowrite

Quick Usage Guide

Setup

Run setup.sh:

Activate the virtualenv (from root of the repository):

(Bonus) To exit virtualenv when you're done with retrowrite:

Usage

Commands

Classic instrumentation
Fuzzing

For fuzzing campaign please see fuzzing/ folder.

Developer Guide

In general, librw/ contains the code for loading, disassembly, and symbolization of binaries and forms the core of all transformations. Individual transformation passes that build on top this rewriting framework, such as our binary-only Address Sanitizer (BASan) is contained as individual tools in rwtools/.

The files and folder starting with k are linked with the kernel retrowrite version.

Demos

In the demos/ folder, you will find examples for userspace and kernel retrowrite (demos/user_demo and demos/kernel_demo respectively).

Cite

The following publications cover different parts of the RetroWrite project:

License -- MIT

The MIT License

Copyright (c) 2019 HexHive Group, Sushant Dinesh sushant.dinesh94@gmail.com, Luca Di Bartolomeo lucadb96@gmail.com, Antony Vennard antony@vennard.ch, Matteo Rizzo matteorizzo.personal@gmail.com, Mathias Payer mathias.payer@nebelwelt.net

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.