Trackers | Backbone Size(*.onnx) | Head Size (*.onnx) | FLOPs | Parameters |
---|---|---|---|---|
NanoTrackV1 | 752K | 384K | 75.6M | 287.9K |
NanoTrackV2 | 1.0M | 712K | 84.6M | 334.1K |
NanoTrackV3 | 1.4M | 1.1M | 115.6M | 541.4K |
Trackers | Backbone | Model Size(*.pth) | VOT2018 EAO | VOT2019 EAO | GOT-10k-Val AO | GOT-10k-Val SR | DTB70 Success | DTB70 Precision |
---|---|---|---|---|---|---|---|---|
NanoTrackV1 | MobileNetV3 | 2.4MB | 0.311 | 0.247 | 0.604 | 0.724 | 0.532 | 0.727 |
NanoTrackV2 | MobileNetV3 | 2.0MB | 0.352 | 0.270 | 0.680 | 0.817 | 0.584 | 0.753 |
NanoTrackV3 | MobileNetV3 | 3.4MB | 0.449 | 0.296 | 0.719 | 0.848 | 0.628 | 0.815 |
CVPR2021 LightTrack | MobileNetV3 | 7.7MB | 0.418 | 0.328 | 0.75 | 0.877 | 0.591 | 0.766 |
WACV2022 SiamTPN | ShuffleNetV2 | 62.2MB | 0.191 | 0.209 | 0.728 | 0.865 | 0.572 | 0.728 |
ICRA2021 SiamAPN | AlexNet | 118.7MB | 0.248 | 0.235 | 0.622 | 0.708 | 0.585 | 0.786 |
IROS2021 SiamAPN++ | AlexNet | 187MB | 0.268 | 0.234 | 0.635 | 0.73 | 0.594 | 0.791 |
For NanoTrackV1, we provide Android demo and MacOS demo based on ncnn inference framework.
We also provide PyTorch code. It is friendly for training with much lower GPU memory cost than other models. NanoTrackV1 only uses GOT-10k dataset to train, which only takes two hours on RTX3090.
OTB2015 BaiduYun password: t5i1
VOT2016 BaiduYun password: v7vq
VOT2018 BaiduYun password: e5eh
VOT2019 BaiduYun password: p4fi
VOT2020 BaiduYun password: x93i
UAV123 BaiduYun password: 2iq4
DTB70 BaiduYun password: e7qm
UAVDT BaiduYun password: keva
VisDrone2019 BaiduYun password: yxb6
TColor128 BaiduYun password: 26d4
NFS BaiduYun password: vng1
GOT10k BaiduYun password: uxds
LaSOT BaiduYun password: ygtx
ILSVRC2015 VID BaiDuYun password: uqzj
ILSVRC2015 DET BaiDuYun password: 6fu7
YTB-Crop511 BaiduYun password: ebq1
COCO BaiduYun password: ggya
TrackingNet BaiduYun password: nkb9 (Note that this link is provided by SiamFCpp author)
OTB2013/2015 Github
UAVDT BaiduYun password: ehit
VOT2016-toolkit BaiduYun password: 272e
VOT2018-toolkit BaiduYun password: xpkb
pysot-toolkit: OTB, VOT, UAV, NfS, LaSOT are supported.BaiduYun password: 2t2q
got10k-toolkit:GOT-10k, OTB, VOT, UAV, TColor, DTB, NfS, LaSOT and TrackingNet are supported.BaiduYun password: vsar
BaiduYun password: fukj
[1] SiamFC
Bertinetto L, Valmadre J, Henriques J F, et al. Fully-convolutional siamese networks for object tracking.European conference on computer vision. Springer, Cham, 2016: 850-865.
[2] SiamRPN
Li B, Yan J, Wu W, et al. High performance visual tracking with siamese region proposal network.Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 8971-8980.
[3] DaSiamRPN
Zhu Z, Wang Q, Li B, et al. Distractor-aware siamese networks for visual object tracking.Proceedings of the European Conference on Computer Vision (ECCV). 2018: 101-117.
[4] UpdateNet
Zhang L, Gonzalez-Garcia A, Weijer J, et al. Learning the Model Update for Siamese Trackers. Proceedings of the IEEE International Conference on Computer Vision. 2019: 4010-4019.
[5] SiamDW
Zhang Z, Peng H. Deeper and wider siamese networks for real-time visual tracking. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019: 4591-4600.
[6] SiamRPNpp
Li B, Wu W, Wang Q, et al. SiamRPNpp: Evolution of siamese visual tracking with very deep networks.Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019: 4282-4291.
[7] SiamMask
Wang Q, Zhang L, Bertinetto L, et al. Fast online object tracking and segmentation: A unifying approach. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019: 1328-1338.
[8] SiamFCpp
Xu Y, Wang Z, Li Z, et al. SiamFCpp: Towards Robust and Accurate Visual Tracking with Target Estimation Guidelines. AAAI, 2020.
[9] SiamCAR
Guo D , Wang J , Cui Y , et al. SiamCAR: Siamese Fully Convolutional Classification and Regression for Visual Tracking. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2020.
[10] SiamBAN
Chen Z, Zhong B, Li G, et al. Siamese box adaptive network for visual tracking[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2020: 6668-6677.
[11] TrTr
Zhao M, Okada K, Inaba M. TrTr: Visual Tracking with Transformer[J]. arXiv preprint arXiv:2105.03817, 2021.
[12] LightTrack
Yan B, Peng H, Wu K, et al. Lighttrack: Finding lightweight neural networks for object tracking via one-shot architecture search[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021: 15180-15189.