We provide a Pytorch implement code of paper "Few-Shot Bearing Fault Diagnosis via Ensembling Transformer-based Model with Mahalanobis Distance Metric Learning from Multiscale Features" accepted by IEEE Transactions on Instrumentation and Measurement.
Note, if you use these datasets, please cite the corresponding papers. (Feel free to contact me if you need PU dataset in .pt file)
git clone https://github.com/HungVu307/Few-shot-via-ensembling-Transformer-with-Mahalanobis-distance
python train_1shot.py --dataset 'CWRU' --training_samples_CWRU 30 --training_samples_PDB 195 --model_name 'Net'
python test_1shot.py --dataset 'CWRU' --best_weight 'PATH TO BEST WEIGHT'
python train_5shot.py --dataset 'CWRU' --training_samples_CWRU 60 --training_samples_PDB 300 --model_name 'Net'
python test_5shot.py --dataset 'CWRU' --best_weight 'PATH TO BEST WEIGHT'
Please feel free to contact me via email hung.vm195780@sis.hust.edu.vn or vumanhhung07.work@gmail.com if you need anything related to this repo!
If you feel this code is useful, please give us 1 ⭐ and cite our paper.
@article{vu2024few,
title={Few-Shot Bearing Fault Diagnosis via Ensembling Transformer-based Model with Mahalanobis Distance Metric Learning from Multiscale Features},
author={Vu, Manh-Hung and Nguyen, Van-Quang and Tran, Thi-Thao and Pham, Van-Truong and Lo, Men-Tzung},
journal={IEEE Transactions on Instrumentation and Measurement},
year={2024},
publisher={IEEE}
}
@misc{vu2024few,
author = {Vu, Manh-Hung and Nguyen, Van-Quang and Tran, Thi-Thao and Pham, Van-Truong and Lo, Men-Tzung},
title = {Few-Shot Bearing Fault Diagnosis via Ensembling Transformer-based Model with Mahalanobis Distance Metric Learning from Multiscale Features},
year = {2024},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/HungVu307/Few-shot-via-ensembling-Transformer-with-Mahalanobis-distance}},
}