Official code implementation based on pytorch for paper, Diff-Font: Diffusion Model for Robust One-Shot Font Generation. Arvix version
pytorch>=1.10.0
tqdm
opencv-python
sklearn
pillow
tensorboardX
blobfile>=1.0.5
mpi4py
attrdict
yaml
方正字库 provides free font download for non-commercial users.
Example directory hierarchy
data_dir
|--- font1
|--- font2
|--- 00000.png
|--- 00001.png
|--- ...
|--- ...
python font2img.py --ttf_path ttf_folder --chara total_chn.txt --save_path save_folder --img_size 80 --chara_size 60
Modify the configuration file cfg/train_cfg.yaml
Key setting for conditional training:
data_dir: 'path_to_dataset/'
chara_nums: 6625 # num of characters
train_step: 420000 # conditional training steps
sty_encoder_path: './pretrained_models/chinese_styenc.ckpt' # path to pre-trained style encoder
model_save_dir: './trained_models' # path to save trained models
stroke_path: './chinese_stroke.txt' # encoded strokes
classifier_free: False # False for conditional training
resume_checkpoint: ""
single gpu
python train.py --cfg_path cfg/train_cfg.yaml
distributed training
mpiexec -n $NUM_GPUS python train.py --cfg_path cfg/train_cfg.yaml
After conditional training , we suggest an additional fine-tuning step.
Modify the configuration file cfg/train_cfg.yaml
Key setting for fine-tuning:
data_dir: 'path_to_dataset/'
chara_nums: 6625 # num of characters
model_save_dir: './trained_models' # path to save trained models
stroke_path: './chinese_stroke.txt' # encoded strokes
classifier_free: True # True for fine-tuning
total_train_step: 800000 # total number of training steps for conditional training and fine-tuning
resume_checkpoint: "./trained_models/model420000.pt" # path to conditional trained model, required for fine-tuning
single gpu
python train.py --cfg_path cfg/train_cfg.yaml
distributed training
mpiexec -n $NUM_GPUS python train.py --cfg_path cfg/train_cfg.yaml
Modify the configuration file cfg/test_cfg.yaml
Key setting for testing:
chara_nums: 6625
num_samples: 10
stroke_path: './char_stroke.txt'
model_path: 'path_to_trained_model, suggest using the ema model'
sty_img_path: 'path_to_reference_image'
total_txt_file: './total_chn.txt'
gen_txt_file: './gen_char.txt' # txt file for generation
img_save_path: './result' # path to save generated images
classifier_free: True
cont_scale: 3.0 # content guidance sacle
sk_scale: 3.0 # stroke guidance sacle
, then run
python sample.py --cfg_path cfg/test_cfg.yaml
1. The generated characters content are incorrect.
Please check whether each font in the dataset used for training contains all characters in the '.txt ' file.
2. The generated character images are unclear and structurally incomplete.
This phenomenon indicates that the model training is not sufficient. Please continue to train the model.
This project is based on openai/guided-diffusion and DG-Font.