This repository contains a demo for Neuro-Symbolic Agent (NeSA), which is specifically Logical Optimal Action (LOA).
git clone --recursive git@github.com:IBM/nesa-demo.git
conda create -n nesa-demo python=3.8
conda activate nesa-demo
conda install pytorch=1.10.0 torchvision torchaudio -c pytorch
conda install gensim==3.8.3 networkx unidecode nltk=3.6.3
pip install -U spacy
python -m spacy download en_core_web_sm
python -m nltk.downloader 'punkt'
pip install -r requirements.txt
cp -r third_party/commonsense_rl/games static/
# Download models
wget -O results.zip https://ibm.box.com/shared/static/chr1vvgb70mmt2gr1yijlsw3g7fq2pgs.zip
unzip results.zip
rm -f results.zip
# Download AMR cache file
mkdir -p cache
wget -O cache/amr_cache.pkl https://ibm.box.com/shared/static/klsvx54skc5wlf35qg3klo35ex25dbb0.pkl
export AMR_SERVER_IP=localhost
export AMR_SERVER_PORT=
python app.py --release
cd third_party/commonsense_rl/
python -u train_agent.py --agent_type knowledgeaware --game_dir ./games/twc --game_name *.ulx --difficulty_level easy --graph_type world --graph_mode evolve --graph_emb_type glove --world_evolve_type manual --initial_seed 0 --nruns 1
cd third_party/loa/
# follow the setup steps in README.md
python train.py
cp results/loa-twc-dleasy-np2-nt15-ps1-ks6-spboth.pkl ../../results/
This repository provides code for the following paper, please cite the paper and give a star if you find the paper and code useful for your work.
Daiki Kimura, Subhajit Chaudhury, Masaki Ono, Michiaki Tatsubori, Don Joven Agravante, Asim Munawar, Akifumi Wachi, Ryosuke Kohita, and Alexander Gray, "LOA: Logical Optimal Actions for Text-based Interaction Games", ACL-IJCNLP 2021.
MIT License