ICB-DCM / pyABC

distributed, likelihood-free inference
https://pyabc.rtfd.io
BSD 3-Clause "New" or "Revised" License
204 stars 44 forks source link
abc approximate-bayesian-inference likelihood-free-inference parameter-inference

pyABC

.. figure:: https://raw.githubusercontent.com/ICB-DCM/pyABC/main/doc/logo/logo.svg :alt: pyABC logo :width: 30 % :align: center

|CI| |docs| |codecov| |pypi| |doi| |black|

Massively parallel, distributed and scalable ABC-SMC (Approximate Bayesian Computation - Sequential Monte Carlo) for parameter estimation of complex stochastic models. Provides numerous state-of-the-art algorithms for efficient, accurate, robust likelihood-free inference, described in the documentation and illustrated in example notebooks. Written in Python with support for especially R and Julia.

.. |CI| image:: https://github.com/ICB-DCM/pyABC/workflows/CI/badge.svg :target: https://github.com/ICB-DCM/pyABC/actions :alt: CI

.. |docs| image:: https://readthedocs.org/projects/pyabc/badge/?version=latest :target: http://pyabc.readthedocs.io/en/latest/ :alt: Docs

.. |codecov| image:: https://codecov.io/gh/ICB-DCM/pyABC/branch/main/graph/badge.svg :target: https://codecov.io/gh/ICB-DCM/pyABC :alt: Codecov

.. |pypi| image:: https://badge.fury.io/py/pyabc.svg :target: https://badge.fury.io/py/pyabc :alt: PyPI

.. |doi| image:: https://zenodo.org/badge/DOI/10.5281/zenodo.3257587.svg :target: https://doi.org/10.5281/zenodo.3257587 :alt: DOI

.. |black| image:: https://img.shields.io/badge/code%20style-black-000000.svg :target: https://github.com/psf/black :alt: Code style: Black