pyPESTO - Parameter EStimation TOolbox for python
pyPESTO is a widely applicable and highly customizable toolbox for
parameter estimation.
Feature overview
Feature overview of pyPESTO. Figure taken from the Bioinformatics publication.
pyPESTO features include:
- Parameter estimation interfacing multiple optimization algorithms including
multi-start local and global optimization. (example,
overview of optimizers)
- Interface to multiple simulators including
- AMICI for efficient simulation and
sensitivity analysis of ordinary differential equation (ODE) models. (example)
- RoadRunner for simulation of SBML models. (example)
- Jax and
Julia for automatic differentiation.
- Uncertainty quantification using various methods:
- Profile likelihoods.
- Sampling using Markov chain Monte Carlo (MCMC), parallel tempering, and
interfacing other samplers including emcee,
pymc and
dynesty.
(example)
- Variational inference
- Complete parameter estimation pipeline for systems biology problems specified in
SBML and PEtab.
(example)
- Parameter estimation pipelines for different modes of data:
- Model selection. (example)
- Various visualization methods to analyze parameter estimation results.
Quick install
The simplest way to install pyPESTO is via pip:
pip3 install pypesto
More information is available here:
https://pypesto.readthedocs.io/en/latest/install.html
Documentation
The documentation is hosted on readthedocs.io:
https://pypesto.readthedocs.io
Examples
Multiple use cases are discussed in the documentation. In particular, there are
jupyter notebooks in the doc/example directory.
Contributing
We are happy about any contributions. For more information on how to contribute
to pyPESTO check out
https://pypesto.readthedocs.io/en/latest/contribute.html
How to Cite
Citeable DOI for the latest pyPESTO release:
When using pyPESTO in your project, please cite
- Schälte, Y., Fröhlich, F., Jost, P. J., Vanhoefer, J., Pathirana, D., Stapor, P.,
Lakrisenko, P., Wang, D., Raimúndez, E., Merkt, S., Schmiester, L., Städter, P.,
Grein, S., Dudkin, E., Doresic, D., Weindl, D., & Hasenauer, J. (2023). pyPESTO: A
modular and scalable tool for parameter estimation for dynamic models,
Bioinformatics, 2023, btad711, doi:10.1093/bioinformatics/btad711
When presenting work that employs pyPESTO, feel free to use one of the icons in
doc/logo/:
There is a list of publications using pyPESTO.
If you used pyPESTO in your work, we are happy to include
your project, please let us know via a GitHub issue.
References
pyPESTO supersedes PESTO a parameter estimation
toolbox for MATLAB, whose development is discontinued.