Shilong Liu*, Tianhe Ren*, Jiayu Chen*, Zhaoyang Zeng, Hao Zhang, Feng Li, Hongyang Li, Jun Huang, Hang Su, Jun Zhu, Lei Zhang:email:.
(*) equal contribution, (:email:) corresponding author.
[Stable-DINO Paper
] [Focal-Stable-DINO Report
] [BibTex
] [Code in detrex
]
14 Jul, 2023
: Stable-DINO is accepted to ICCV 2023!26 Apr, 2023
: By combining with FocalNet-Huge backbone, Focal-Stable-DINO achieves 64.6 AP on COCO val2017 and 64.8 AP on COCO test-dev without any test time augmentation! Check our Technical Report for more details.12 Apr, 2023
: Preprint our paper on ArXiv! ResNet-50 Backbone
Swin-L Backbone
Compare with SOTA methods
Stable-MaskDINO
Our code is implemented on detrex.
Please follow the detrex instruction for installation and data preparation.
We provide a training example of Stable DINO R50. Refer to the detrex doc for more details
CUDA_VISIBLE_DEVICES=0 \
python tools/train_net.py \
--config-file projects/stabledino/configs/stabledino_r50_4scale_12ep.py \
--num-gpus 1 \
dataloader.train.total_batch_size=4 \
train.output_dir="./output/stabledino_r50_4scale_12ep" \
train.test_with_nms=0.80
If you use Stable-DINO in your research or wish to refer to the baseline results published here, please use the following BibTeX entry.
@misc{liu2023detection,
title={Detection Transformer with Stable Matching},
author={Shilong Liu and Tianhe Ren and Jiayu Chen and Zhaoyang Zeng and Hao Zhang and Feng Li and Hongyang Li and Jun Huang and Hang Su and Jun Zhu and Lei Zhang},
year={2023},
eprint={2304.04742},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
@misc{ren2023strong,
title={A Strong and Reproducible Object Detector with Only Public Datasets},
author={Tianhe Ren and Jianwei Yang and Shilong Liu and Ailing Zeng and Feng Li and Hao Zhang and Hongyang Li and Zhaoyang Zeng and Lei Zhang},
year={2023},
eprint={2304.13027},
archivePrefix={arXiv},
primaryClass={cs.CV}
}