IIC-SIG-MLsys / HDDT

Distrubuted DNN Training on Heterogeneous GPUs
0 stars 5 forks source link

HDDT

Distrubuted DNN Training on Heterogeneous GPUs

  1. 创建编译目录

    mkdir build && cd build
  2. 生成makefile

    cmake ..

支持的参数

-DBUILD_STATIC_LIB=ON # 开启静态库编译
  1. 编译

    make
  2. python包(可选)

    • CMakeLists.txt 中 set(BUILD_PYTHON_MOD ON),重新编译整个项目
    • 构建并安装包(使用build) pip install build
    • 构建wheel包 python -m build
    • 安装wheel包 pip install dist/xxx.whl

环境依赖

  1. 计算库驱动 CUDA/DTK/CNRT etc.
  2. openMPI sudo apt install openmpi-bin openmpi-common libopenmpi-dev
  3. Miniconda
    • https://docs.anaconda.com/miniconda/
    • conda create -n py310 python=3.10
  4. pytorch
    • pip3 install torch torchvision torchaudio
    • python -c "import torch; print(torch.cuda.is_available())"
  5. glog
    • sudo apt-get install libgoogle-glog-dev
  6. pybind
    • git submodule update --init --recursive